INTRODUCTION

The chemical composition of shales is controlled by factors such as source area, weathering, and grain-size sorting during transport, sedimentation, diagenesis and metamorphism (McLennan et al., 1993; Cullers and Podkover, 2000). The distribution of some elements, such as rare earth elements (REEs), Y, Sc, Th, Zr, Hf, Cr, Co and their elemental ratios can be used as geochemical tracers due to their immobility during weathering and transportation processes (Cullers, 2000; Nyakairu and Koeberl, 2001). Geochemical studies have been carried out on shales in order to better understand their provenance characteristics, weathering processes, paleoclimate, paleoredox conditions and tectonic settings (Bauluz et al., 2000; Lee, 2002; Khanehbad et al., 2012; Tawfik et al., 2017).

Paleozoic sedimentary rock sequences which have been partly or slightly affected from the Alpine orogenesis in Turkey retain significant records on source rock, tectonic setting and paleogeographic evolution. In addition the Lower Paleozoic depositional history, tectonics and geological evolution of these units are not yet fully...
understood, due to scarcity of detailed biostratigraphical and geochemical studies. The Paleozoic part of rocks in southern Turkey is called Arabian Platform or southeast Anatolian Ophiolite. Paleozoic Daş Shales under investigation are Upper Paleozoic shales exposing around the Bismil-Diyarbakir area in southeast Anatolia. Investigations in the Daş Shales have been continued since 2011 by the Turkish National Petroleum Company (TPAO) and several international companies. Geological and organic geochemical characteristics of the sedimentary rocks of southeastern Turkey were investigated by Bozdoğan et al. (1987), Perinçek et al. (1991), Kavak and Toprak (2013), Özdemir and Ünlügenç (2013). Bozkaya et al., (2009) determined new mineralogical findings on diagenesis-metamorphism of Paleozoic-Lower Mesozoic rocks in the Diyarbakir-Hazro region. Tolluoglu and Süm (1995) set forth Early Paleozoic aged monzonogranitic magmatic rocks in southeast Anatolia. Gönçüoğlu and Turhan (1984) and Kozlu and Gönçüoğlu (1997) studied the Early Paleozoic evolution of southeastern Turkey and suggested that Silurian sediments representing the Daş Shales are interlayered with sandstones that contain lithic fragments of felsic rocks. On the basis of mineralogical, petrographical and field observations, the Daş Shales have been interpreted as a Silurian rift basin. However, the above mentioned studies are not supported by geochemical data. Therefore, the geochemical signatures of Daş Shales might provide strong evidences of the source rocks, changing depositional environment, weathering conditions, climatic conditions and tectonics. The aim of this work is to constrain the provenance, depositional history and tectonic setting of Daş sediments. Geochemical characterization were made on the cutting samples from the Derindere and Çeltikli cores which were drilled through the Dadas Formation by the Turkish Petroleum Corporation (TPAO) in the years of 2008-2009. These samples were studied for major, trace and rare earth element geochemistry. We explored how successfully geochemical evidences can be used as proxies during the Paleozoic time. It will be evaluated the composition of the core sediments, weathering intensity, sediment provenance, depositional environment and tectonic setting. Petrological and geochemical studies are very limited in southeastern Turkey. Given that such Paleozoic sequences are very common within Southeast Anatolian Ophiolite; this pioneering study with special emphasis on geochemical parameters will provide in a regional sense primary data for future investigations on Paleozoic rocks.

MATERIAL AND METHODS

Geological setting

The cores are located in the east and northwestern of Bismil, Diyarbakir, southeastern Turkey (Lat. Derindere: 37° 52’59”.32 N, 40° 50’12”.66 E, Çeltikli: 37° 50’17”.64 N, 40° 53’23”.32 E). The cores cut the Paleozoic units at the bottom hole. A stratigraphic columnar section of Paleozoic units of southeastern Turkey is illustrated in Figure 1. The distribution of Paleozoic units in the southern Turkey is given in Figure 2a. The oldest rocks (Mid-Upper Cambrian) are named as the Derik Group and the upper part of the group is composed of shale, marl, siltstone, sandstone and quartzite of the Sosink Formation. Ordovician time is represented by two formations: Lower Ordovician Seydisehir Formation composed of sandstone, siltstone and quartzite intercalations and Mid-Upper Ordovician Bedinan Formation is composed of silty shales interbedded with sandstone layers. The Bedinan Formation has regressive characteristics that form a shallowing upward sequence. Its lower shale member represents a deeper marine environment (Izta, 2004), while the upper member is mainly composed of siltstone and sandstones.

<table>
<thead>
<tr>
<th>AGE</th>
<th>GROUP</th>
<th>FORMATION</th>
<th>LITHOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERMIAN</td>
<td>UPPER</td>
<td>GOMANIBRIK</td>
<td>Coal, shale, siltstone, sandstone, coal</td>
</tr>
<tr>
<td></td>
<td>MIDDEN</td>
<td>KAS</td>
<td>Dolomite-sandstone-mudstone-marl</td>
</tr>
<tr>
<td></td>
<td>LOWER</td>
<td>KAYAYOLU</td>
<td>Dolomite-sandstone-mudstone-marl</td>
</tr>
<tr>
<td></td>
<td>DIYARBAKIR</td>
<td>HAZRO</td>
<td>Sandstone clayey/limestone-siltstone-organic rich shales</td>
</tr>
<tr>
<td></td>
<td>LOWER</td>
<td>DADAS</td>
<td>Silty shales interbedded sandstone layers</td>
</tr>
<tr>
<td></td>
<td>MID-UPPER</td>
<td>BEDINAN</td>
<td>Sandstone, siltstone, quartzite</td>
</tr>
<tr>
<td></td>
<td>LOWER</td>
<td>SEYDİSEHIR</td>
<td>Shale, marl, siltstone, sandstone and quartzite</td>
</tr>
<tr>
<td>CAMBRIAN</td>
<td>DERIK</td>
<td>SOSINK</td>
<td>Shale, marl, siltstone, sandstone and quartzite</td>
</tr>
</tbody>
</table>

Figure 1. Stratigraphic columnar section of Paleozoic units in southeastern Turkey (Aydemir, 2012).
Paleozoic Dadaş Shales of South Eastern Turkey

...deposited in the shallow marine environment. The Bedinan Formation is unconformably overlain by the Early Silurian-Early Devonian Dadas Formation. They change upward to Devonian Hazro-Kayayolu and Upper Permian Tanin Group (Figure 2b-c). The Dadas Formation under investigation is composed of three members: The basal unit of the formation, Dadas-I Member is composed of organic-rich shales alternated with carbonates, Dadas-II is composed of marine, carbonated shales and clayey limestones. The member becomes siltier in the upper part. The Dadas-III on top consists of shales alternated with sand facies deposited in a shallow marine environment. The Dadas Formation is observed as a transgressive/regressive sequence throughout the northern Arabian Platform (Aydemir, 2012). The map of drilling area is shown in Figure 2b. In the map area, Miocene Şelmo Formation overlies the Early Silurian-Early Devonian Dadaş Shales and other units. Other units exposing in the area are Devonian Hazro, Upper Permian Tanin Group, Lower Triassic Çigli Group, Cretaceous Mardin-Şırnak Group, Eocene-Oligocene Midyat Group, Pliocene-Quaternary recent alluvial fans and river bed alluvium deposits (Figure 2c).

Hazro-Kayayolu Formation is represented by gray-green colored dolomitic marls with pinkish colored stiff, sandy dolomite intercalations, brown-claret colored sandstone, gray-green mudstones, white laminated cream-colored sandstones, brown patchy green marl and green to brown colored marls. The Tanin Group overlying the upper parts of the Hazro Formation contains coaly shale, siltstone, sandstones and also coal occurrences. Çiğli Group is represented by a sandstone-shale succession, sandy-clayey limestone, dolomite and limestones. Mardin-Şırnak Group includes cherty limestone, dolomite, limestone, sandstone, and mudstone. Midyat Group is composed of gypsum, limestone, dolomite whilst the overlying Şelmo Formation is made up with sandstone, conglomerate and shale (Stolle et al., 2011).

Sampling and analytical methods

Samples were collected from the 190-m long Derindere...
and 160-m long Çeltikli cores. Units cut in both cores are lithologically similar and gradually change to each other. The resistivity and density of Derindere and Çeltikli core are shown in Figure 3. Gamma-gamma (density-resistivity) logs also respond well to lithology. The decrease in resistivity and density reflects a different compaction trend in these levels (Figure 3).

At the upper most of two cores, thin sandy layer is present. Limonite-bearing dark and light green brownish muds with silty clay layer intercalations are present at depth of 2880-2920 m in the Derindere core and at depth of 2630-2650 m in the Çeltikli core. Greenish-gray shales are dominant at depth of 2920-3000 m in the Derindere core and at depth of 2650-2730 m in the Çeltikli core. White-gray colored carbonaceous shales, and rare organic matter are found at depth of 3030-3070 m in the Derindere core and at depth of 2730-2760 m in the Çeltikli core. Higher organic matter contents are shown at depth of 3000-3030 m in the Derindere core and at depth of 2650-2730 m in the Çeltikli core.

Bulk mineralogy of twenty samples was determined by X-ray powder diffraction (XRD) (Rigaku DMAXIII), using Ni-filtered CuKα at 15 kV-40 mA instrumental settings. In whole-rock analysis, feldspar was identified using reflections at 3.16 Å, dolomite at 2.92 Å, calcite at 3.03 Å, quartz at 3.33. The whole-rock mineral percentages were determined following the technique described by Gündoğu (1982) after Brindley (1980). All samples were analyzed as random mounts. The characteristic peak intensities (I) of minerals were normalized to that of the (104) reflection of dolomite. In other words, a K factor for each mineral (including clays with peaks between 19 and 20° theta) was determined as

\[K = \frac{I_{\text{dolomite}}}{I_{\text{mineral}}} \]

(\(K_a\): peak intensity of minerals; \(I_a\): coefficient of minerals). Accordingly, the areas of the air dried 3.04 Å peak (Ka) were multiplied by 0.74 (Ia) to yield calcite, the area of the 3.34 Å peak (Kb) was multiplied by 0.34 (Ib) to obtain quartz, the 3.20 Å peak areas were multiplied by 1.62 to estimate feldspar, the 4.48 Å peak areas (Kn) were calculated from the following equation:

\[\% \text{ of mineral } a = 100 \times \frac{K_a I_a}{(K_a I_a + K_b I_b + \ldots K_n I_n)} \]

Figure 3. Columnar section and sample horizons of a) Derindere, b) Çeltikli cores from Dadaş Shales.
multiplied by 14.63 (In) to yield clay mineral contents. The relative error of this method is less than 15%.

The geochemical analyses of 32 representative samples were carried out at ACME Analytical Laboratories Ltd. (Canada) using ICP-AES and MS for the determination of major, trace elements and rare-earth elements (REE). Furthermore, Total carbon (TC) and sulfur (TS) contents were measured at ACME Analytical Laboratories Ltd. (Canada) by using Leco analysis. Loss on ignition was determined by weight difference after ignition at 1000 °C. In order to determine the relation between the elements and organic material, total organic carbon (TOC) analysis was performed. TOC (%) analysis was conducted at Geochemistry Laboratories of Turkish Petroleum Corporation (TPAO) by the pyrolysis method using the Rock-Eval 6 analyzer. Correlation coefficients were calculated from the data set of the geochemical analyses. Accordingly, the significance level is \(\alpha=0.05 \) r value of less than 0.30 is small effect or weak correlation, values of 0.50 and above represent a large effect strong correlation (McCarroll, 2016).

RESULTS

Mineralogy

The results of X-ray diffraction analysis on whole-rock samples from the Derindere and Çeltikli are listed in Table 1. The average abundances of clay minerals, calcite, dolomite, feldspar and quartz are 67.4 wt%, 8.3 wt%, 9.7 wt%, 7.1 wt% and 7.5 wt% in the Derindere core and 59.2 wt %, 9.4 wt (%), 11 wt%, 11.5 wt% and 8.9 wt% in the Çeltikli core, respectively (Figure 4 a,b; Table 1). Calcite content increases between the depths of 3000 and 3020 m in Derindere samples and from 2730 to 2760 m in the Çeltikli samples which are consistent with lithologies in both cores.

All the samples exhibit high proportions of clay minerals and high values of the Mudrock Maturity Index [MMI=100xphyllosilicates/(phyllosilicates+quartz+feldspars)] (Bathia, 1985).

Geochemistry

Major and trace element geochemistry

Major and trace element concentrations, average (\(\bar{x} \)), standard deviations (Std) and variation coefficients (CV) of the analyzed samples are given in Table 2 (supplementary file). Likewise, average data of Post-Archean Australian shales (PAAS) and Upper Continental Crust (UCC) are presented in Table 2 supplementary file and used here in to represent average shale composition.

Major element distribution reflects the mineralogy of studied samples. As expected, calcareous shale samples are enriched in CaO. D300, 301, 302 samples in Derindere and C273, C274, C276 samples in Çeltikli core exhibit higher CaO concentrations. Compositional variations of Derindere and Çeltikli core samples are comparatively low, with the exception CaO values, in agreement with the mineralogical results (Table 2 supplementary file). The average concentrations of SiO\(_2\), Al\(_2\)O\(_3\), Fe\(_2\)O\(_3\) and MgO concentrations in the Derindere core are 43.74 wt%, 20.04 wt%, 9.86 wt% and 2.53 wt% and 44 wt%, 18.30 wt%, 30 wt% and 2.80 wt% in the Çeltikli core. The vertical distribution of SiO\(_2\), Al\(_2\)O\(_3\), Fe\(_2\)O\(_3\) and CaO elements are very similar in both cores (Table 2 supplementary file). Using the geochemical classification diagram of Herron (1988) all the samples are classified as shale except for a sample that falls in the wacke field (Figure 5). This is also supported by XRD data which indicate high clay ratios.

Major element data which is compatible with mineralogical data may be used to establish the element-mineral associations for shales. Although the element associations may change from one sample to another, a correlation analysis would demonstrate the general trends. Correlation graphics between major elements and Al\(_2\)O\(_3\) are shown in Figure 6. With the exception of MgO, CaO, P\(_2\)O\(_5\), SiO\(_2\), Na\(_2\)O the major oxides show significant positive correlation with Al\(_2\)O\(_3\) demonstrating that Al, K, Cr and Ti sources are mainly from feldspar and clay minerals as revealed from the XRD analysis (Figure 4). There is a significant positive correlation with LOI and CaO (\(r=0.96 \)) in all samples suggesting that carbonates play an important role on the LOI of the shale samples (Figure 6). Rb displays strong positive correlation with K\(_2\)O (\(r=0.70 \)) suggesting that both these elements are probably supplied by illite and muscovite components (Figure 6) (Plank and Langmuir, 1998). Bozkaya et al., (2009) pointed illite, illite/smectite (I-S) mixed layer clays and kaolinite minerals in Dadaş Formation.

Selected trace element were compared with PAAS (Taylor and McLennan, 1985). The distributions of the elements in core shales are shown in Figure 7. Dadaş Shales have similar Cr, Rb, Y, Nb, Sc contents and show slightly depletion patterns in Ni, Cu Pb, Zr and Hf, slightly enrichment in Zn. Little differences of Cu, Ni and Zn contents with respect to PAAS can be attributed to chemical weathering diversity. Lower contents of Zr and Hf with respect to PAAS are associated with heavy minerals, such as zircon, which is resistant to weathering (Murali et al., 1983).

REE geochemistry

Concentrations of REE together with some elemental ratios are listed in Table 3 (supplementary file). REE show a strong positive correlation with the group of Al\(_2\)O\(_3\), Fe\(_2\)O\(_3\), Na\(_2\)O, K\(_2\)O, TiO\(_2\), MnO and Cr\(_2\)O\(_3\) and, and a negative correlation with MgO and CaO (Figure 8a).
Table 1. Whole-rock mineral percentages (%) of samples from Derindere drill hole (a) Celtikli drill hole (b) Maturity Index MMI = 100* [phyllosilicates/(phyllosilicates + quartz + feldspars)]. (Bathia, 1985).

<table>
<thead>
<tr>
<th>DERINDERE CORE</th>
<th>CELTIKLİ CORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Sample</td>
</tr>
<tr>
<td>Whole Rock Minerals (%)</td>
<td>Whole Rock Minerals (%)</td>
</tr>
<tr>
<td>Number</td>
<td>Rock Name</td>
</tr>
<tr>
<td>D288</td>
<td>Shale</td>
</tr>
<tr>
<td>D291</td>
<td>Shale</td>
</tr>
<tr>
<td>D294</td>
<td>Shale</td>
</tr>
<tr>
<td>D296</td>
<td>Shale</td>
</tr>
<tr>
<td>D297</td>
<td>Shale</td>
</tr>
<tr>
<td>D300 Carbonated shale</td>
<td>67.0</td>
</tr>
<tr>
<td>D301 Carbonated shale</td>
<td>68.0</td>
</tr>
<tr>
<td>D302 Carbonated shale</td>
<td>63.0</td>
</tr>
<tr>
<td>D305</td>
<td>Shale</td>
</tr>
<tr>
<td>D306</td>
<td>Shale</td>
</tr>
<tr>
<td>Average</td>
<td></td>
</tr>
<tr>
<td>St dev</td>
<td></td>
</tr>
</tbody>
</table>
The correlation analysis has been used to find out the relationship of REE in rocks and their mineral components (Figure 8b). Total REEs are positively correlated with Co, Cs, Ga, Nb, Rb, Sn, Ta, Th, and Y which indicates that REEs are associated with clay minerals. The sorption of REE on clay minerals was reported by Milodowsky and Zalasiewich (1991) and Coppin et al. (2002). Total REEs are negatively correlated with Hf and Zr indicating that REEs are associated with clay minerals rather than zircon. The negative correlation of total REEs with U, Mo, Cu, Pb and Ni might be due to strong association of these elements with sulfur (Figure 8b). Effective role of sulfides in the REE concentration in black shale is discussed by Tait (1988).

Chondrite-normalized patterns of Dadaş samples, Bedinan Formation (from Tetiker, 2014) were compared with North American Shale Composite (NASC) and PAAS in Figure 9. The shale samples show LREE enrichment and flat HREE pattern with negative Eu anomaly and are similar to those of NASC and PAAS. In most of samples, Gd, Tb and Dy (HREE) concentrations are higher than PAAS. The relative depletion in the HREEs compared the LREEs may be due to a lower concentration of high REE-bearing heavy minerals such as zircon, rutile, sphene and garnet (Nyakairu and Koeberl, 2001). Lastly, Dadaş shale
samples display significantly higher range of REE than Bedinan Formation.

The average shales have Ce/Ce* values of 1.0 (Cullers and Berendsen, 1998). Ce/Ce* values of studied samples are 0.83-0.96 that are consistent with average shale values (Table 3 supplementary file). This is also supported by geochemical classification diagram in Figure 5.

Organic matter sulfur contents and element relations

Total organic carbon (TOC), total carbon (TC) and total sulfur (TS) contents of Dadaş Shales are shown in Table 2 supplementary file. Averages of TOC, TC and TS values are 0.68%, 2.38%, 0.54% in the Derindere core and 0.64%, 2.80% and 0.60% in the Çeltikli core.

Organic material content is slightly high at depth of
Paleozoic Dadaş Shales of South Eastern Turkey

3000 to 3030 m in the Derindere core and 2730 to 2770 m in the Çeltikli core but significantly increases at depth of 3030 to 3070 m in the Derindere core and 2770 to 2790 m in the Çeltikli core (Table 2 supplementary file). The positive correlations of TC with CaO might be indicative of the accumulation of Ca in carbonates (Table 2 supplementary file). Mo, Ni, As concentrations have a close relationship with organic material (Koralay and Sarı, 2013). TOC shows a positive correlation with these elements supporting this phenomenon (Table 4).

DISCUSSION
Paleoweathering and paleoclimate

Alkali and alkaline earth elements are useful in paleoweathering studies because they are rapidly removed during weathering, and can be used to obtain the degree of chemical weathering around the source areas at the time of sedimentation (Nesbit and Young, 1984). Weathering of source area is one of the most important processes affecting the composition of sedimentary rocks. Chemical Index of Alteration (CIA) proposed by Nesbitt and Young (1984) is widely used used to investigate the degree of alteration. This index can be calculated using molecular proportions: $\frac{\text{Al}_2\text{O}_3}{(\text{Al}_2\text{O}_3+\text{CaO}^*+\text{K}_2\text{O}+\text{Na}_2\text{O}) \times 100}$, where CaO* is the amount of CaO incorporated in the...
silicate fraction of the rock.

Generally, CIA values in Phanerozoic shales range from 70 to 75 which reflect a composition of muscovite, illite and smectite, and show a moderately weathered source, intensely weathered rocks yield mineral compositions trending toward kaolinite or gibbsite and a CIA approaching 100. CIA of unweathered rock is about 50. The Derindere and Çeltikli cores show CIA average of 75.17 and 72.42 which are consistent with moderate weathering (Table 2 supplementary file, Figure 10a). The Dadaş Shales are parallel to A-C line, showing leaching of CaO and Na₂O under moderate to intensive weathering processes from source rocks of the upper continental crust. In addition, they have relatively high Th/Sc and low Zr/Sc ratios suggesting negligible sediment recycling and sorting expressed by zircon enrichments (McLennan et al. 1993) (Tables 2; Figure 10b). This is in accordance with a generally immature “syntectonic” character of Dadaş Shales and is also reflected in mineralogy. According to Bozkaya et al. (2009), the Dadaş Formation contains quartz, feldspar, sericite, and muscovite. They conducted detailed clay analysis and indicated that the Silurian sedimentary units are illite, illite-smectite mixed layer clay (I-S), and kaolinite. They also stated that illite and I-S point to a muscovite-rich composition.

According to Leo et al. (2002), elemental variations are associated with paleoclimate-based sea level changes and changes in deposition conditions. The Dadaş Shales were deposited in a shelf environment and consequently variations in element concentrations reflect deposition conditions and paleoclimate. Zhao et al. (2007) used the C-value the ratio of ∑(Fe+Mn+Cr+Ni+V+Co)/∑(Ca+Mg+Sr+Ba+K+Na) to study the Permian paleoclimate of northwest China’s Junggar Basin, and suggested that this ratio is between 0.2-0.8 for semiarid to semi-moist climates. The C-values of Dadaş Shales range from 0.18 to 1.66 (average 0.97 in Derindere core, 0.69 in Çeltikli core), reflecting a generally moist paleoclimate during early Paleozoic time (Table 2 supplementary file). According to Tolluoğlu and Sümer (1995), Gondwana
moved to South Pole in the Early Ordovician which resulted in invasion of Africa by glaciers. As a result of melting of continental glacier masses in Africa and South America the Early Silurian started with a rise in the sea level (Ziegler et al., 1977). Because of this partial transgression, organic material-rich dark shales and shale-alternated sandstone-carbonate units were deposited on top of glacial conglomerates. Likewise, Göncüoğlu and Turhan (1984) stated glacio-eustatic sea-level changes and formation of periglacial deposits during Late Ordovician-Early Silurian and rapid subsidence due to global sea-level rise and deposition of clastics during Mid-Late Silurian. In addition in both cores semi-arid and semi-moist levels can be distinguished (Figure 11). C values and ∑ REE contents are decreased towards to arid regime. Tanaka et al. (2007) suggested that detrital materials predominantly control REE characteristics and higher REEs indicate higher detrital contribution to the marine environment due to excess precipitation in moisture climate. Calcite abundance is also increased with arid climate. Küçükuyusal et al. (2013) showed that the increase in calcite in the Quaternary sediments in Turkey with the increasing aridity and the prevalence of the dry season. In arid climate, evaporation occurs and during the progressive evaporation of water the first precipitate is CaCO₃ (calcite) in most cases (Sinha and Raymahashay, 2009).

Paleoredox conditions

Ratios of several trace elements have been recommended for the evaluation of paleoredox conditions. Under reducing conditions, Co, Cr, Ni, V, and U are absorbed by the sediments. Ni/Co, V/Cr have been used to estimate the paleoredox conditions (Mir, 2015).

According to Jones and Manning (1994), Ni/Co ratios <5 suggest oxic conditions, 5-7 dysoxic conditions and >7 suboxic to anoxic conditions Cr exists only in detrital fraction and is not affected by redox conditions. Thus high V/Cr values are accepted to be an indicator of anoxic conditions (Dill, 1986). Jones and Manning (1994) also used V/Cr ratios of <2 to infer oxic conditions, 2-4.25 for dysoxic conditions and >4.25 suboxic to anoxic conditions. In addition, Ni/Co and V/Cr ratios of studied samples still suggest oxic-dysoxic conditions for the environment (Figure 12). U/Th and Cu/Zn ratios were also used to check redox conditions. Low U contents are generally found in sediments deposited in oxygenated conditions, high U contents are found in sediments from the oxygen minimum zone; for this reason, the U/Th ratio may be used as a redox indicator. U/Th ratios below 1.25 suggest oxic conditions for deposition, whereas values above 1.25 indicate suboxic and anoxic conditions. While low Cu/Zn values indicate oxidizing conditions, high Cu/Zn values show reducing conditions (Ramkumar et al., 2015; Mir, 2015). In the studied shales, low U/Th (average 0.28 in Derindere core, 0.30 in Çeltikli core) and Cu/Zn (average 0.56 in Derindere core, 0.43 in Çeltikli core) ratios suggest oxic conditions of deposition (Table 2 supplementary file).

In oxic conditions, Ce is less readily dissolved in
seawater, which shows negative Ce anomaly (Elderfield and Greaves, 1982). Oxic sediments on the other hand are more enhanced with respect to Ce and show less negative to positive Ce anomaly (>-0.1) (Wright et al., 1987; Chen et al., 2012). Ce anomaly values of Dadaş shales are between -0.01 and 0.23 indicating that shales were deposited under oxic to weakly oxic conditions (Table 3 supplementary file).

TOC contents of samples are very low which also reflect the oxic-dioxic character of the depositional environment. According to Tribovillard et al. (2006), sediments under oxic-dysoxic conditions have TOC contents of <2%. As shown from Table 4a, TOC contents of most samples are <2%.

Provenance

Shales generally reflect provenance of siliciclastic sediments due to their homogeneity and post depositional impermeability. The geochemical compositions of terrigenous sediments are frequently used by many researchers to infer the provenance, because they tend to reflect source rock composition. Provenance studies are common for sedimentary rocks (Al-Juboury and Al-Hadidy, 2009; Armstrong-Altrin, 2009; Armstrong-Altrin et al., 2015 a,b; Garzanti et al., 2016). To characterize the provenance of shales, it is necessary to rely on elements that are the least mobile during weathering, transport, diagenesis and metamorphism (Wronkiewicz and Condie, 1990).

Major oxides, such as TiO$_2$ and Al$_2$O$_3$, are generally used for provenance interpretations. A discriminating criterion has been applied to distinguish different types of parent igneous rocks, with Al$_2$O$_3$/TiO$_2$ ratios of 3-8 for mafic igneous rocks, 8-21 for intermediate igneous rocks, and 21-70 for felsic igneous rocks. The average Al$_2$O$_3$/TiO$_2$ ratio is 23.73 in Derindere core and 22.80 in Çeltikli core (Table 2 supplementary file) suggest felsic-intermediate igneous rock compositions for samples. The provenance discrimination diagram of Roser and Korsch (1988) has been widely used in recent studies to discriminate the provenance of clastic sediments (Castillo et al., 2015). On this diagram, most of Dadaş Shale samples show intermediate, basic composition except for 2 samples that plot inside the felsic and quartz sedimentary provenance field, respectively (Figure 13a). As a whole, most core sediments were derived from rocks of intermediate composition varying between felsic and mafic rock types.

The REEs, Y, Zr, Th, Sc, Hf, and Co are valuable elements for examining the source-area composition (Taylor and McLennan, 1985; McLennan and Taylor, 1991). These elements have very short residence times in the water column. In addition, some element ratios are useful for distinguishing felsic from mafic source components in shales (Taylor and McLennan, 1985; Wronkiewicz and Condie, 1990; Cullers, 1994). It is shown in Figure13b that La/Sc, Th/Sc, Th/U, Rb/Sr, La/Ni, Cr/Th, Zr/Sc, Zr/Th, Zr/Hf, (La/Yb)$_N$ (N, chondrite normalized values from Sun and McDonough, 1989) ratios of Dadaş Shales have similar composition to those of UCC and PAAS except for Zr/Sc ve Zr/Th ratios. Element ratios of mafic and felsic source rocks such as La/Sc, Sc/Th, Cr/Th, Co/Th and Eu/Eu* differ significantly and hence provide useful information on the provenance of sedimentary rocks (Cullers and Podkovyrov, 2000). When these ratios are compared, composition of Dadaş Shales is compatible with sediments derived from felsic rocks, the upper continental crust (UCC), and PAAS (Table 5). On the other hand higher values of Sc/Th, Cr/Th, Co/Th in Dadaş Shales with respect to sands from silicic rocks may indicate the presence of relatively higher proportion of basic material in their source. This is shown in the La/Th vs Hf provenance discrimination diagram of Floyd and Leveridge (1987) (Figure 13c). In the graphic Dadaş Shales are scattered near to the mixed felsic/basic source fields. Tetiker (2014) studied geochemistry of Bedinan Formation and concluded that sandstones represent a range of magmatic provenance regions, mostly from quartz sedimentary to partially felsic and mafic composition. Ordovician glaciers formed from these lithologies and melted in Silurian possibly provided source material for the Dadaş Formation.

The REE patterns are also used to infer sources of sedimentary rocks, since basic rocks contain low LREE/HREE ratios and no Eu anomalies, whereas more silicic
rocks usually contain higher LREE/HREE ratios and negative Eu anomalies (Cullers, 1994). Regarding the Dadaş Shales, fractionated REE patterns (La/Yb)\textsubscript{N} are between 8.57-12.77 and (Gd/Yb)\textsubscript{N} are between 1.68 and 2.07 (\textit{N} = chondrite normalized values from Sun and McDonough, 1989). These values are compatible with UCC and PAAS (Table 3 supplementary file). In the Eu/Er vs (Gd/Yb)\textsubscript{N} graphic, the samples overlap each other and plot well within the field that depict the PAAS source (Figure 13d).

Tectonic setting

Major and trace-elements and their various bivariate and multivariate plots with discrimination functions are
mostly applicable for tectonic setting of the sedimentary basins. Various diagrams are available to identify the tectonic setting of a source region (e.g. Murray, 1992; Bhatia, 1983; Bhatia and Crook, 1986; Roser and Korsch, 1986). These diagrams were evaluated by other researchers (e.g. Armstrong-Altrin and Verma, 2005; Verma and Armstrong-Altrin, 2016). Verma and Armstrong-Altrin (2013) proposed two new discriminant-function-based major-element diagrams for the tectonic discrimination of siliciclastic sediments from three main tectonic settings: island or continental arc, continental rift and collision have been created for the tectonic discrimination of high-silica (SiO$_2$) adj=63-95% and low-silica rocks (SiO$_2$) adj=35-63% (the adj values are adjusted to 100% on an anhydrous basis). These diagrams were successfully used in recent studies to discriminate the tectonic setting of a source region (Armstrong-Altrin et al., 2014; Armstrong-Altrin, 2015). SiO$_2$ of Dadaş samples are low silica rocks (SiO$_2$ values are between 33.10-59.29%). According to low-silica diagrams Dadaş sediments are plotted within the rift field (Figure 14). During the Early Paleozoic time, there was a rifting in the southeastern Anatolia.

Ruban et al. (2007) suggested that in Paleozoic time the Middle East terranes were affected by the evolution of the Paleo-Tethyan oceans, the Hun and Cimmerian superterranes, and the Gondwana and Pangaea supercontinents. They also suggested that at least three major Paleozoic rift episodes occurred along the margins of Gondwana and Pangea. The first was in the Early Ordovician when Avalonia broke off from Gondwana. At the Latest Ordovician-Earliest Silurian times glaciers advanced over regions of Gondwana reaching western Saudi Arabia (Figure 15 a,b). The second involved the mid-Silurian breakaway of the Hun Superterran (Figure 15c). Following the glaciations in the Gondwana in Ordovician, Toridia uplift (420 Ma) is reported to be another important event in southeastern Anatolia (Tolluoğlu and Sümer, 1995). Tolluoğlu and Sümer (1995) mention migmatite
Paleozoic Dağ Shales of South Eastern Turkey

formation and anatexis granites via deformation and uplift of Anatolia microcontinent and Taurides. This continental rift formation gave rise to deposition of sediments of Diyarbahr Group which corresponds to Dağ Shales of felsic to neutral composition accompanied by Bedinan Formation (Figure 15d). This proposed rifting in southeastern Anatolia was first revealed in this study by diagrams of Verma and Armstrong-Altrin (2013).

CONCLUSIONS

The chemical composition of the analysed sediments is controlled by source-area composition, weathering, paleoredox, paleoclimate and tectonic setting.

CIA values of Dağ samples are consistent with medium weathering. The C-values shows mainly moist climatic conditions influenced the Dağ Shales at Early Silurian-Early Devonian time. Ni/Co, V/Cr, U/Th, Cu/Zn, Ce/Ce* values suggest the oxic depositional environment which is also in support of low TOC values of samples.

Geochemical data indicate magmatic and partly sedimentary provenance for Dağ Shale. The geochemical characteristics preserve the signatures of sediments derived from UCC. Fe₂O₃/TiO₂, Al₂O₃/(Al₂O₃+Fe₂O₃+MnO), Th/U, Rb/Sr, La/Ni, Cr/Th, Eu/Eu* ratios of shales are similar to UCC and PAAS composition.

Higher LREE/HREE ratios and negative Eu anomalies, fractionated REE patterns with (La/Yb)N, (Gd/Yb)N values are similar to PAAS and characteristic of sediments derived from the UCC. But the higher values of Sc/Th, Cr/Th, Co/Th in Dağ Shales with respect to sands from silicic rocks may indicate the presence of relatively higher proportion of basic material in their source. This is also supported by provenance discrimination and La/Th vs Hf diagram. It is possible that mafic components were derived from undermost Ordovician Bedinan Formation which is supported by the fact that Bedinan Formation

Figure 15. a) Plate-tectonic reconstruction of the Latest Ordovician-Earliest Silurian times glaciers advanced over regions of Gondwana reaching western Saudi Arabia (from Ruban et al., 2007), b) the Middle-Late Silurian shows the Hun Superterrane rifting away from the Gondwana Supercontinent (from Ruban et al., 2007), c) Early Silurian glacial conglomerates (modified from Tolluoğlu and Sümer, 1995), d) Middle Silurian-Early Devonian transgression and continental rift formation (modified from Tolluoğlu and Sümer, 1995).
contains not only felsic but also basic components.

As conclusion, thickening of continental crust and continental rifting in the region triggered by oceanic rifting in Ordovician exerted a major control in composition of Ordovician Bedinan Formation. Following transgression in Silurian supplied source material to Dadaş Formation from underlying lithologies. A second rifting was developed in the Middle Silurian and migmatite and anatexis events in the upper crust affected the composition of Dadaş Formation which is revealed by the presence of components with variable compositions in the sediments. This rifting in southeastern Anatolia was revealed by new discriminant-function-based major-element diagrams for the tectonic discrimination of siliciclastic sediments. Petrographic and stratigraphic data on Dadaş Formation presented in previous studies have been supported first time by geochemical findings in the present study. On a regional scale, the equivalents of Paleozoic Dadaş Shales are widespread and geochemical study of these marine sediments can be used to add new insights into the Paleozoic stratigraphic evolution.

ACKNOWLEDGEMENTS

The financial support of the Fırat University (Turkey) Scientific Research Projects Unit under FUBAP-MF.11.09 project number is gratefully acknowledged. We would like to thank Turkish Petroleum Corporation (TPAO), ACME (Canada) and General Directorate of Mineral Research and Exploration (Ankara, Turkey) for chemical and mineralogical analysis. We are grateful to the editor and anonymous reviewers whose helpful reviews have greatly improved the manuscript.

REFERENCES

anomalies in the Late Jurassic (Tithonian) Black Rock Series of Qiangtang Basin, north-central Tibet. Oil Shale 29, 18-35.
Cullers R.L. and Berendsen P., 1998. The provenance and chemical variation of sandstones associated with the Mid-Continent Rift system, USA. European Journal of Mineralogy 10, 987-1002.

Tetiker S., 2014. Petrography and geochemistry of early Palaeozoic clastic rocks from the southeast Anatolian autochthonous rocks in Mardin area (Derik-Kızıltepe), Turkey. Carpathian Journal of Earth and Environmental Sciences 1, 149-162.

This work is licensed under a Creative Commons Attribution 4.0 International License CC BY. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/