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Abstract 

In this paper, an attempt was made to prepare Magnesium Metal Matrix Composites (MMCs) using AZ31 Mg as 

matrix material and hafnium carbide (HfC) as reinforcement material. AZ31-HfC Mg MMCs were prepared by 

using stir casting method using different HfC reinforcement percentages such as 5%, 10% & 15% by wt. Tensile 

tests and surface micro hardness tests on AZ31-HfC Mg MMCs were conducted. Yield strength & ultimate tensile 

strength & surface micro hardness of AZ31-HfC MMCs was found to increase up to 12%, 17% & 23% compared to 

base material AZ31 Mg alloy. Tribological studies were conducted using three sliding speeds (2 mm/s, 4 mm/s and 6 

mm/s). Micro scratch tests were conducted on traction force and coefficient of abrasive friction variations. Pin on 

disc wear tests were conducted to study the wear mass loss of AZ31-HfC MMCs at different loading conditions, 

sliding rate and reinforcement percentage of HfC by wt. SEM analysis of wear tested specimens indicated voids, 

furrows, micro-cracks and wear debris. 

Keywords: AZ31, composites, hafnium carbide, tribology, wear. 

1. Introduction 

Metal Matrix Composites (MMCs) are preferred in manufacturing sectors as they exhibit 

enhanced properties without compromising their parent alloy characteristics (Guo et al.  2011). 

MMCs exhibit enhanced corrosion and wear resistance than their parent alloys (Venkatesh & 

Rao 2018). Magnesium is a light weight material. Mg and its alloys are used in structural, 

manufacturing, automotive and electrical sectors as they exhibit enhanced thermal conductivity, 

high strength and low density (Liu et al. 2019. A lot of advantages were observed on reinforcing 

Mg alloys with different types of reinforcements. Improvement in tribological properties (higher 

wear resistance) was observed on reinforcing Mg alloy with B4C reinforcements (Paidar et al. 

2021). Nano bioceramic (nano bio-glass) reinforced Mg MMCs exhibits better mechanical 

properties and corrosion resistance (Khodaei et al. 2019). 

. In this investigation, an attempt has been made to evaluate the tribological characteristics of 

HfC reinforced AZ 31 Mg MMCs. 
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2. Materials and methods 

In this investigation, AZ31 Magnesium alloy was used as the matrix material for preparing Mg 

MMCs. Rolled AZ31 Mg alloy material was procured from M/s. Technolloy Inc, Mumbai. The 

procured AZ31 Mg material was cut into small pieces after thoroughly cleaning it with phenol to 

remove unwanted dust and dirt. AZ31 Mg was tested using spark spectrometer for identification 

of its chemical composition (Hussain et al. 2011). Cleaned AZ31 Mg sample was placed in spark 

spectrometer and by igniting sparks at different regions; its elemental composition was 

identified. The chemical composition of AZ31 Mg in wt. percentage is shown in Table 1. 

Table 1. Chemical composition of AZ31 Mg in wt. percentage 

Alloy Al Zn Mn Si Cu Ca Fe  Ni Mg 

AZ31 Mg 2.3 1.1 0.16 0.06 0.03 0.034 0.041 0.039 Bal 

 

Hafnium Carbide (HfC) was used as reinforcement material. 99.9% pure HfC powder 

was procured from M/s. Nano Research Elements, New Delhi. Stir casting process was used for 

preparing AZ31-HfC Mg MMCs (Kumar et al. 2018). Measured quantities of AZ31 Mg alloy 

pieces and HfC powder was placed in steel crucible of the furnace and heated. For melting Mg 

alloy, the temperature of the furnace was increased to 750°C (Behnamian et al. 2022). The 

mixture was retained at that temperature till it became semi solid. To evenly distribute HfC in 

Mg (having wide density difference), stirring was done at 400 rpm for 30 minutes (Huang et al. 

2021). After mixing HfC in Mg matrix, the furnace temperature was increased to 1000°C 

(Lotfpour et al 2021). At 1000°C, the mixture was retained for 15 minutes. Then, for lowering 

the density of molten Mg matrix, temperature of the furnace was decreased to 700°C and stirring 

of the mix was started at 200 rpm (Wang & Rong 2021). After stirring the mixture for 20 

minutes, it was poured into cylindrical moulds for solidification. The cylindrical moulds were 

pre-heated to 400°C, for preventing directional solidification (Kumar & Murugan 2012). For 

minimizing oxidation and sputtering, the entire casting process was done in inert gas (argon) 

atmosphere (Zhang et al. 2022).  

Three sets of HfC reinforced AZ31 Mg MMCs were prepared by increasing HfC 

percentage. AZ31 Mg MMC sets were prepared using 5%, 10% & 15% HfC reinforcement by 

weight. For identifying the effect of HfC addition, one set was cast without HfC reinforcement 

(0% by weight). For identification, the as cast HfC reinforced Mg MMCs were designated as 

shown in Table 2. 
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Table 2 – Designation of the as-cast HfC reinforced Mg MMCs 

S No. AZ31 Mg (wt.%) HfC (wt. %) Designation 

1 100 0 AZ31-BM 

2 95 5 AZ31-05HfC 

3 90 10 AZ31-10HfC 

4 85 15 AZ31-15HfC 

 

The tensile characteristics of AZ31-HfC Mg MMCs were evaluated using an electro-

pneumatically controlled Universal Testing Machine (Make – INSTRON). As per ASTM E 08 

standards, tensile test samples were prepared from AZ31-HfC Mg MMCs (Lv et al. 2019). By 

using an incremental load of 1.5 kgf/min, the samples were subjected to tensile loading till 

fracture. 

  Stress strain graphs were plotted and the corresponding changes in Yield Strength (YS), 

Ultimate Tensile Strength (UTS) and percentage of elongation of HfC reinforced Mg MMCs 

were calculated. Variations in the surface micro hardness of AZ31-HfC Mg MMCs were 

calculated using Vickers micro hardness testing equipment (Make – EQUITOP). As per AZTM 

E 384 standards, micro hardness testing was conducted on AZ31-HfC Mg MMCs (Srivastava et 

al. 2019). A load of 20 kgf was placed on the samples for 15 seconds and the indentation was 

evaluated for calculating the micro hardness. The compounds and elements formed in AZ31-HfC 

Mg MMCs during stir casting process were identified using X-Ray Diffraction Spectroscopy 

(Make-RIGAKU). XRD analysis was done using a copper target with step size of 0.002, within 

20° to 80° two theta (2θ) (Feng et al. 2020). For conducting microstructural investigations on 

AZ31-HfC Mg MMCs, the specimens were prepared by using standard metallurgical procedures 

(Gao et al. 2018). The surface of the specimens was initially polished using 4 different grades of 

emery sheet. After emery polishing, it was cleaned using phenol. Then, the specimens were 

subjected to fine polishing using diamond grit paste coated disc polishing equipment (Lei et al. 

2010).  

Scanning Electron Microscopic (SEM) studies were done using Nitrogen chamber fitted 

Scanning Electron Microscope (Make –Leads). SEM images were evaluated to identify the 

modifications in the surface characteristics of AZ31-HfC Mg MMCs.  

For evaluating the surface integrity of AZ31-HfC Mg MMCs, micro scratch tests were 

conducted. As per ASTM C-1624 standards, micro scratch testing was conducted (Farnoush et 

al. 2015). Micro scratch test specimens were polished using emery before subjecting them to 

tests.  5 scratches were done per test sample with starting and ending load of 20 N, 15 mm stroke 

length, 100 µm/s scratching velocity and 2 mm scratching offset. By conducting micro scratch 
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tests, the traction force was calculated. By dividing traction force with normal load, the 

coefficient of abrasive friction was conducted (Ghosh et al. 2008).  

Tribo wear tests on AZ31-HfC Mg MMCs were conducted using pin on disc tribo wear 

testing equipment (Make-DUCOM). As per ASTM G133 standards, AZ31-HfC Mg MMC pins 

were prepared (Arnaud et al. 2021). EN31 steel plate was used as testing disc, with a track 

diameter of 80 mm. The load on pins was varied from 20N to 80N and the wear experiments 

were conducted without lubrication. The duration of the test was between 4 to 8 minutes 

depending upon sliding speed. Three sliding speeds such as 2 m/s, 4 m/s and 6 m/s were used in 

the experiments.  

The variations in specific wear rate and coefficient of friction was identified on increasing 

HfC reinforcements in AZ31 Mg MMCs. Wear mass loss was calculated by measuring the 

weight of the pins before and after wear experiments. After wear testing, the specimens were 

subjected to microstructural analysis using SEM. The surface modifications in MMC surfaces 

were identified. 

3.  Results & Discussion 

 

3.1 Tensile test results 

 

The Yield Strength (YS) and Ultimate Tensile Strength (UTS) of AZ31-BM were recorded 

as 173 MPa and 246 MPa respectively. On adding 5% HfC, YS and UTS of AZ31-05HfC 

increased by 10.4% and 8.13%, compared to the base material. On increasing HfC reinforcement 

to 10% by wt., YS and UTS of AZ31-10HfC increased by 13.8% and 15.04%, compared to the 

base material. Increase in tensile characteristics was observed on increasing the HfC 

reinforcement till 10% by wt. On increasing HfC reinforcement up to 15% by weight, YS and 

UTS of AZ31-15HfC reduced by 1.54% and 4.4% compared to AZ31-10 HfC. The tensile test 

results of AZ31-HfC Mg MMCs are shown in Table 3.    

Table 3. Tensile test results of AZ31-HfC Mg MMCs 

Composite Yield Strength 

(YS) (MPa) 

Ultimate Tensile 

Strength (UTS) (MPa) 

Elongation 

% 

Micro hardness (HV) 

AZ31-BM 173 + 3 246 + 3 13.1 + 0.4 57 + 3.2 

AZ31-05HfC 191 + 2 266 + 2 08.6 + 0.5  68 + 0.71 

AZ31-10HfC 197 + 3 283 + 2 06.4 + 0.5 71 + 0.58 

AZ31-15HfC 194 + 4 271 + 3 05.2 + 0.3 84 + 1.12 

 

The stress - strain graphs of AZ31- BM and the three HfC reinforced AZ31 Mg MMCs are 

shown in Fig. 1. 
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Fig. 1. Stress Strain graphs of AZ31-HfC MMCs 

The surface micro hardness variations of HfC reinforced AZ31-Mg MMCs are shown in Fig. 2. 

 

Fig. 2. Micro hardness variation of HfC reinforced AZ31 Mg MMCs 

AZ31-BM without HfC addition shoed the micro hardness value as 57 HV. On addition 

of HfC reinforcements, a consistent increase in micro hardness of AZ31-HfC Mg MMCs was 

observed. The micro-hardness of AZ31-5HfC increased by 19.2%, compared to AZ31-BM. 

Similarly, the micro hardness of AZ31-10HfC and AZ31-15HfC increased 24.5% and 47.4%, 

compared to the base material.  
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  In micro scratch experiments, the variations in traction force with HfC reinforcements are 

shown in Fig. 3a. Scratch resistance increases on increasing reinforcement percentage in MMCs 

(Pramanik 2016). During micro scratch experiments, heating in the scratch region changes 

residual depth causing visco-elastic recovery (Karimzadeh & Ayatollahi 2014). Increase in HfC 

reinforcements causes a reduction in penetration depth (scratch depth/ microns) during micro 

scratch experiments. Increase in HfC reinforcement causes a change in traction force. A 

consistent increase in traction force was observed on increasing the HfC reinforcement 

percentage, due to a reduction in visco elastic healing.  

Variations in coefficient of abrasive friction with increase in HfC reinforcements are 

shown in Fig. 3b. Strong visco elastic behavior of the MMCs during micro scratch tests 

influences the coefficient of abrasive friction. Reinforcement addition in MMCs influences pure 

elastic recovery, inhibiting scratch healing (Dong et al. 2015). Bond reformation occurs between 

HfC reinforcement particles and Mg matrix, after removal of the force on the surface imposed by 

the scratching tip. Therefore, coefficient of abrasive friction was found to increase on adding 

HfC reinforcements.  
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(b)  

Fig.3.(a). Traction force variations on increasing HfC reinforcement percentage in AZ31-HfC 

MMCs, (b). Coefficient of abrasive friction variations on increasing HfC reinforcement in AZ31-

HfC MMCs 

Variations in specific wear rate at sliding speed of 2mm/s, 4 mm/s & 6 mm/s are shown 

in Fig. 4a, Fig. 4b & Fig. 4c, respectively. At low sliding speed of 2 mm/s, entire specific wear 

rate of all the combinations lies between 0.85 x 10-6 mm3/Nm and 0.45 x 10-6 mm3/Nm (Fig. 4a). 

For HfC reinforced Mg MMCs, at lower loads, the curves are wide and at higher loads, the 

curves are shallower. HfC reinforcement in Mg provides significant protection against wear. 

Under similar tribo wear testing conditions, reinforcement addition in MMCs causes its melt 

viscosity to increase (Lloyd 1994). Reduction in specific wear rate is observed on increasing 

load. For all combinations of HfC reinforced AZ31 Mg MMCs, reduction in specific wear rate is 

observed. On increasing HfC reinforcement to 10% by weight, specific wear rate reduces. On 

increasing HfC reinforcements beyond 10%, specific wear rate increases.  
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a) Specific wear rate with load at sliding speed 2 mm/s 

 

b) Specific wear rate with load at sliding speed 4 mm/s 
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c) Specific wear rate with load at sliding speed 6 mm/s 

Fig. 4. Variations in specific wear rate at sliding speed of a). 2mm/s, b) 4mm/s, c) 6mm/s. 

At sliding speed of 4 mm/s (Fig. 4b), entire specific wear rate of all the combinations are 

between 0.8 x 10-6 mm3/Nm and 0.4 x 10-6 mm3/Nm. Increase in sliding speed results in 

reduction in specific wear rate for all combinations at all loads. Tribo wear causes detrimental 

changes to the surface of the test specimens. HfC particles increases the friction resistance 

behavior of MMCs, during dry sliding wear tests against the tribo wear disk. HfC reinforcements 

increase the beneficial effect such as specific wear reduction (Adesina et al. 2019). Doubling the 

contents of HfC micro particles (from 5% to 10% y wt.) provides better wear resistance. 

Oscillation of specific wear rate occurs on increasing the HfC reinforcement from 5% to 15% 

(10% HfC being the middle). For all HfC reinforced Mg MMCs and base material, at same 

contact pressure, increase in sliding speed from 2 mm/s to 6 mm/s cause a reduction in specific 

wear rate. At sliding speed of 6 mm/s, (Fig. 4c), lower specific wear rate for 5% HfC and 10% 

HfC reinforced Mg MMCs are observed. These are due to the protection of MMC surface against 

scratching and wear owing to HfC particles. Smoothening of generally irregular surfaces by 

reinforcements reduces wear (Jia & Gu 2014). 

Variations in coefficient of friction upon increasing Load at sliding speed of 2mm/s, 

4mm/s & 6mm/s is shown in Fig. 5a, Fig. 5b. & Fig. 5c. Increase in coefficient of friction was 

observed upon increasing load. Increase in HfC reinforcement till 10% by weight, decreased 

coefficient of friction. Further, on increasing HfC reinforcements caused decrease in coefficient 

of friction. At sliding speed of 2 mm/s (Fig. 5a), the strong bond between HfC and Mg matrix 

helps to maintain the broken pieces within the composite surface, preventing the formation of 

third phase particles and reducing wear. From 20 N to 80 N load, the variations in coefficient of 
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friction were between 0.22 and 0.14, for all HfC combinations. Coefficient of friction decreases 

with increase in HfC percentage.  

High performance composite with optimum wear resistance is observed at 10% HfC 

reinforcement (Fig. 5b). At 4 mm/s sliding speed, for all samples, the entire coefficient of 

friction variation graph shifted lower, between 0.21 and 0.135. Wear resistance increases and 

coefficient of friction reduces for all loading conditions, on increasing HfC reinforcements. HfC 

reinforcements exhibit excellent wear and friction performance.  

 

a) Coefficient of friction with load at 2mm/s 
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b) Coefficient of friction with load at 4 mm/s 

 

c) Coefficient of friction with load at 6mm/s 

Fig.5. Variations in coefficient of friction with load at sliding speed a) 2 mm/s, b) 4 mm/s, c) 6 

mm/s.  
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minimal asperities. Subjecting them to wear tests resulted in ploughing action, increasing the 

friction coefficient. Decrease in coefficient of friction with increase in sliding velocity was 

attributed to the change in shear rate (Muratov et al. 1998). 
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of the particles by forming an oxide film (Jerome et al. 2010), resulting in reduced wear mass 

loss. On increasing the loads in tribological experiments, removal of oxide films results in higher 

wear mass loss. Even though the mechanical characteristics of the Mg MMCs are enhanced by 

using HfC reinforcements, there is a drawback from the abrasiveness of these hard HfC particles. 

These particles cause a high friction coefficient in the contact region above a certain load. This 

causes increase in wear mass loss for 15% HfC reinforced Mg MMCs than 10% HfC reinforced 

Mg MMCs.  

At sliding rate of 4 mm/s (Fig. 6b), the overall wear mass loss increased (between 0.44 g 

to 0.27 g), compared to the wear mass losses at sliding rate of 2 mm/s. On increasing the normal 

load applied in tribological experiments, an oxide layer forms on the surfaces due to increase in 

surface temperature (Komori & Umehara 2015). This oxide layer imparts a self lubrication effect 

and reduces friction between the tribo wear surfaces (Berman et al. 2013). On increasing the 

sliding velocity from 2 mm/s to 4 mm/s, the coefficient of friction reduces on increasing HfC 

reinforcements. The area of contact increases with respect to nominal area of contact on 

increasing the load on the test pin. This increased the frictional force between the sliding 

surfaces.   
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(b) 

 

(c) 

Fig. 6. Variations in mass loss with loads at sliding speed (a) 2 mm/s, (b) 4 mm/s, (c) 6 mm/s 
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slides against hard disk material without liquid or solid lubrication, the softer one abrades, flows 

or adheres to the harder material, creating an interface of low shear strength (Erdemir 2005).  

The SEM images of wear tested samples are shown in Fig. 7. Worn out flakes are 

observed in AZ31-BM along wear direction (Fig. 7a). When Mg surface slides with the disc 

under normal load, deformation occurs. Ploughing and wear occurs due to the formation of local 

pressure at the asperities. Strength of Mg MMCs are less at low shear strain rates, resulting in 

higher actual area of contact and higher coefficient of friction under dry wear conditions (Sumer 

et al. 2008). During tribo wear tests, the local pressure at the asperities increases to a very high 

value. As it exceeds the material yield stress value, wear occurs.  

 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 7 SEM images of wear tested specimens (a) AZ31-BM, (b) AZ31-5HfC, AZ31-10HfC, AZ31-15HfC 

Eruptions and tears are observed in AZ31-5HfC specimen (Fig. 7b). Wear occurs when 

HfC on the surface of the MMC gets removed due to MMC surface – wear disc interaction. Due 

to the stacked chemical structure of HfC micro particles, they act as solid lubricants. During 

wear tests, reinforcements in Mg surface exhibit weak inter layer bonding due to van der vaals 
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force (Ru et al. 2020). This provides least tangential resistance and enables low strength shearing 

in the interacting surfaces. During wear experiments, due to matrix-reinforcement interaction, 

powerful short range forces come into action. This causes formation of secure adhesive junctions 

at the actual area of contact (Poon & Sayles 1992). Micro-cracks and voids are formed due to the 

effect of hard disc surface sliding on softer Mg MMC surface.  

Scratches and lines are observed in AZ31-10HfC samples (Fig.7c). Relative motion 

between MMC surface and wear disc causes shearing of adhered junction. The environment 

(disc) and the mating surface (Mg MMCs) undergo dynamic interaction which plays an 

important role during wear experiments (Schall et al. 2010). During sliding interaction, wear of 

surface due to abrasion causes crack formation. Frictional thrust and shear force increases with 

sliding due to clustering of HfC particles. Prolonged sliding accelerates wear rate, causing micro 

cracks, voids and micro-fractures on the surface.  

Cracks perpendicular to wear direction is observed in AZ31-15HfC specimens (Fig.7.d). 

During wear experiments, abrasion causes bonding of the asperities on the surfaces of the 

contacting surfaces. Abrasive and erosive wear occurs when HfC particles trapped at the 

interface causes abrasive action against the surface in contact. Excessive HfC reinforcement’s 

results in increased frictional force and actual contact surface area cause severe wear. Excessive 

rubbing results in formation of wear track and accumulated wear debris.  

Conclusions 

In this investigation, using stir casting, HfC reinforced AZ31 Mg MMCs were prepared and 

subjected to mechanical and tribological investigations. 

1. Increase in yield strength and ultimate tensile strength was observed upon increasing HfC 

reinforcements up to 10% by weight. Excessive reinforcement (beyond 10% HfC) caused 

reduction in tensile characteristics of AZ31-HfC MMCs. 

2. In micro scratch tests, traction force and coefficient of abrasive friction increased on 

increasing wt. percentage of HfC. 

3. On conducting tribo wear tests, specific wear rate and coefficient of friction decreased upon 

increasing load. On increasing HfC reinforcements till 10% by weight, reduction in mass loss 

was observed. On increasing HfC reinforcements beyond 10% mass loss increased. 

4. SEM analysis of wear tested specimens worn out flakes, eruptions, tears, scratches, lines and 

cracks perpendicular to wear direction. 
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