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Abstract 
 

With big data widening in healthcare groups, precise investigation of medical data conveniences early disease 

detection. However, the analysis accuracy is reduced when the parallel processing of medical data is not performed. 

Moreover, with curse of dimensionality as several regions discloses distinctive facets and if not properly filtered, relevant 

information’s are also discarded which may reduce the early prediction of disease outbreaks. To address these issues, in 

this work, a method using machine learning technique called, Polynomial Tikhonov Entropy and Kullback Vuong Logistic 

Classifier (PTE-KVLC) is presented.  First, Inverse Polynomial Map Reduce Pre-processing is applied to the input data 

that both minimizes the signal to noise ratio and obtains computationally efficient features via parallel processing. This is 

turn provides a mean for early detection of epileptic seizures. Second, the feature extraction model is based on Entropy 

Tikhonov Regularization and is applied to the pre-processed features to identify the features pertinent to seizures. These 

features are then selected and fed into a Kullback–Leibler Vuong and Logistic Regressive Machine Learning Classifier 

for early epileptic seizure recognition. Experimental results demonstrate that the proposed method significantly classifies 

the epileptic seizure classes by means of specificity, sensitivity, and accuracy.  

 

Keywords: Big Data, Map Reduce, Inverse Polynomial, Tikhonov Entropy, Kullback–Leibler, Vuong, 

Logistic Regressive 

 

INTRODUCTION 
 

Due to the rise of healthcare expenditures, early disease prevention has never been important 

as it is today (Nagavei et al. 2018). This is particularly due to the increased threats of new disease 

variants, bio-terrorism as well as recent improved developments in data collection and computing 

technology. Increased amount of healthcare data increases the demand to develop an efficient, 

sensitive and cost-effective solution for disease prevention (Quintero-Rincon et al. 2018).  

Epilepsy has emerged as a severe disease in recent years, characterised by a persistent risk of 

developing epileptic seizures. A seizure is a transient occurrence of symptoms or signs due to 

abnormal excessive or synchronous neuronal activity in the brain (Ahmadi et al. 2020). A seizure 

does not necessarily mean that a person has epilepsy, unless the criteria for diagnosis of epilepsy are 

met. As there are a number of conditions that can be associated with paroxysmal events that can 

mimic seizures or epilepsy, described in the section 'epilepsy imitators' in Epilepsy Diagnosis, these 

should be carefully excluded (Namazi et al. 2020). If not properly treated in the early stage also 

results in severe health issues and even some times to mortality. 

The traditional seizure detection method mainly focusses on promotion of healthcare 

benefits. Presently, Deep Neural Network (DNN) with dataset normalization accurately predicted 

disease with minimum error (Thara et al. 2019). In Successive Decomposition Index (SDI), false 
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positive rate was reduced while detecting epileptic seizure (Raghu et al. 2020). Channel-Embedding 

spectral-temporal Squeeze-and-Excitation Network (CE-stSENet) aided by a maximum mean 

discrepancy-based information maximizing loss (Li et al. 2020). The visual inspection using deep 

neural network consumes more time and with a lack of parallel processing, running time of overall 

process is found to be tedious. 

A method called, Polynomial Tikhonov Entropy and Kullback–Leibler Vuong Logistic 

Classifier (PTE-KVLC) is presented to address the above said issues.  First, Inverse Polynomial 

Map Reduce pre-processing is applied to the input data that minimizes the signal to noise ratio and 

obtains computationally efficient features via parallel processing. This is turn provides a mean for 

early detection of epileptic seizures. Second, the feature extraction model based on Entropy 

Tikhonov Regularization is applied to the pre-processed features to identify the features pertinent to 

seizures. The features are selected and fed into a Kullback–Leibler Vuong Logistic Regressive 

Classifier for early epileptic seizure recognition. 

Our paper proposes the use of a machine learning classified based on logistic regressive 

model for early epileptic disease diagnosis and evaluates several feature data points to generate the 

inputs to the logistic regressive model. The best previous results were obtained from the automated 

seizure detection using deep neural network [18] and successive decomposition index (SDI) [14]. 

These previous works are our baseline in this paper. 

  OVERVIEW OF MAP REDUCE BASED PRE-PROCESSING 

The MapReduce based preprocessing step for improving the performance of the classifier 

is presented. Preprocessing and feature extraction from EEG signal have great affect in maximizing 

prediction time and True Positive Rate (TPR). Preprocessing is performed for removing noise from 

the signals and to increase the Signal-to-Noise Ratio (SNR) with the help of filtering techniques 

(Chu et al. 2007). When medical data is not processed in parallel, the accuracy of the analysis is 

reduced. Furthermore, with the curse of dimensionality, several regions reveal distinct features, and 

if not correctly filtered, essential information is also eliminated, potentially reducing early disease 

outbreak prediction (Gillick et al. 2006). This provides a parallel preprocessing strategy for 

decreasing the classifier's complexity. 

MapReduce is a parallel programming model consists of two functions Mapper and 

Reducer, runs on all machines in a cluster. The input and output of these functions must be in form 

of key, value pairs. The Mapper takes the input (k1, v1) pairs from Distributed File System (DFS) 

and produces a list of intermediate (k2, v2) pairs. An optional Combiner function is applied to reduce 

communication cost of transferring intermediate outputs of mappers to reducers. Output pairs of 

mapper are locally sorted and grouped on same key and feed to the combiner to make local sum 

(Low et al. 2014). The intermediate output pairs of combiners are shuffled and exchanged between 

machines to group all the pairs with the same key to a single reducer. This is the only communication 

step that occurs and is handled by the MapReduce platform. There is no other way for mappers and 

reducers to communicate. The Reducer takes (k2, list (v2)) values as input, make sum of the values 

in list (v2) and produce new pairs (k3, v3). Figure 3.1 illustrates the work flow of MapReduce. 
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MapReduce is a simplified programming model since all the parallelization, inter 

machine communication and fault tolerance are handled by run-time system. The Inverse 

Polynomial Map Reduce pre-processing is applied to the input data that both minimizes the signal 

to noise ratio and obtains computationally efficient features via parallel processing. This is turn 

provides a mean for early detection of epileptic seizures.  

BASICS OF ENTROPY TIKHONOV REGULARIZATION 

Feature extraction is a part of the dimensionality reduction process, in which, an initial 

set of the raw data is divided and reduced to more manageable groups. The most important 

characteristic of large data sets is the large number of variables (Nixon & Aguado 2019). These 

variables require a lot of computing resources to process them. So, Feature extraction helps to get 

the best feature from those big data sets by selecting and combining variables into features, thus, 

effectively reducing the amount of data. These features are easy to process, but still able to describe 

the actual data set with the accuracy and originality. Figure 1 shows the MapReduce model. 

 

Figure 1 MapReduce Model 
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Entropy Tikhonov Regularization based feature selection approach has been proposed 

for increasing the classifier`s performance. Tikhonov based regularization is a well-known 

technique, where smoothness of the unknown function is searched (Calvetti & Reichel 2003). 

Similarly, to Tikhonov's regularization, the maximum entropy formalism searches 

for global regularity and yields the smoothest reconstructions that are consistent with the available 

data. The maximum entropy principle has been proposed as a general inference on the basis of 

Shannon's axiomatic characterization of the amount of information. This principle has successfully 

been applied to a variety of fields. 

Recently, the non-extensive entropic form (Sq) has been used as a new regularization 

operator, using only q = 0.5. The q parameter plays a central role in the Tsallis' thermo statistics, 

where q = 1 the Boltzmann-Gibbs-Shannon's entropy is recovered. As mentioned, the non-extensive 

entropy includes as a particular case the extensive entropy (q = 1): where the maximum entropy 

principle can be used as a regularization method. Another important particular case of the non-

extensive entropy occurs when q = 2. In such case, the maximum non-extensive entropy principle 

to the S2 regularization operator is equivalent to the standard Tikhonov regularization or zeroth-

order Tikhonov regularization. 

Two methods were investigated for determining the regularization parameter: The 

Morozov's discrepancy principle, and the maximum curvature scheme of the curve relating 

smoothness versus fidelity, inspired in Hansen's geometrical criterion. The regularization techniques 

are effective methods to deal with the ill-posed problems. In recent years, entropy-based 

regularization techniques have been proposed one after the other, and this technique have been 

successfully applied to disease prediction. The Entropy Tikhonov Regularization based feature 

selection approach is proposed. 

PRINCIPLE OF LOGISTIC CLASSIFIER 

Detecting the appearance of preictal state predicts the seizure. Therefore, the purpose 

of this investigation is to detect the appearance of preictal state for epileptic seizures. Machine 

learning models are used to predict epileptic seizures. These machine learning models include EEG 

signal acquisition, signal preprocessing, features extraction from the signals, and finally 

classification between different seizure states. The objective of the prediction model with machine 

learning was to detect preictal state’s sufficient time before seizure onset starts. 

Logistic Regression is used for the classification problems, it is a predictive analysis 

algorithm, and based on the concept of probability. Logistic regression transforms its output using 

the logistic sigmoid function to return a probability value. Logistic regression analysis studies the 

association between a categorical dependent variable and a set of independent explanatory variables 

(Field 2009). The name logistic regression is used when the dependent variable has only two values, 

such as 0 and 1 or Yes and No. Logistic regression competes with discriminant analysis as a method 

for analyzing categorical-response variables. Many statisticians feel that logistic regression is more 

versatile and better suited for modeling most situations than is discriminant analysis. This is because 

logistic regression does not assume that the independent variables are normally distributed as the 

discriminant analysis does. Logistic regression performs a comprehensive residual analysis 
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including diagnostic residual reports and plots. It can perform an independent variable subset 

selection search, looking for the best regression model with the fewest independent variables. It 

provides confidence intervals on predicted values and provides Receiver Operating Characteristic 

(ROC) curve to help determine the best cut-off point for classification. The proposed research work 

Kullback–Leibler Vuong Logistic Regressive Machine Learning Classifier integrates log likelihood 

ratio with Kullback–Leibler function, therefore providing accurate results.  

   POLYNOMIAL TIKHONOV ENTROPY AND KULLBACK-LEIBLER 

VUONG LOGISTIC CLASSIFIER 

Polynomial Tikhonov Entropy and Kullback-Leibler Vuong Logistic Classifier (PTE-

KVLC) method for early disease diagnosis is proposed and splitted into three sections. All samples 

were shuffled into different chunks with each chunk comprising different data points at distinct time 

periods and sent as input. In addition, the machine learning classifier based on Logistic is constructed 

to perform early disease diagnosis.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  Block diagram of Polynomial Tikhonov Entropy and Kullback-Leibler Vuong Logistic 

Classifier (PTE-KVLC) 

The steps involved in the PTE-KVLC method are as follows: 

i. An efficient model, called, Inverse Polynomial Map Reduce is proposed to pre-process raw 

brain activity suitable for logistic classifier. 

Seizure 
Non-Seizure 
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ii. The robust feature extraction is done by combining permutation-based entropy and Tikhonov 

regularization function into the pre-processed features to help the classifier perform well, 

therefore paving way for early disease diagnosis.  

iii. Early disease diagnosis is performed via Kullback–Leibler Vuong Logistic Regressive 

Classifier that integrates log likelihood ratio with Kullback–Leibler function, therefore 

providing accurate results. 

PTE-KVLC method is applied to brain activity data for early disease diagnosis. The 

proposed PTE-KVLC method comprises of three phases; pre-processing, feature extraction and 

classification for epileptic disease diagnosis. The working procedure of PTE-KVLC is depicted in 

Figure 2.  

First, Inverse Polynomial Map Reduce pre-processing is applied to the brain activity 

dataset. Here, pre-processing is applied to both minimize the signal to noise ratio and obtained 

computationally efficient features. Second, an entropy-based automated features extraction or 

automated data point extraction using Tikhonov Entropy-based Feature Extraction model is used for 

extracting features or data points with high optimal class variances. Once the features or data points 

have been extracted, finally, classification between seizure recognition is performed by applying 

KVLC.  

Dataset Description  

The Epileptic Seizure Recognition Data Set is a commonly used dataset featuring 

epileptic seizure detection. The dataset from reference comprises 5 different folders, each with 100 

files. Each file represents a single person with recording of brain activity for 23.6 seconds. The 

corresponding time-series is sampled into 4097 data points. Each data point is the value of the EEG 

recording at a different point in time, with a total of 500 individuals with each has 4097 data points 

for 23.5 seconds. The dataset is divided and shuffled every 4097 data points into 23 chunks, each 

chunk comprises 178 data points for 1 second, and each data point is the value of the EEG recording 

at different point in time. So, a total of 23 x 500 = 11500 pieces of information represented in rows. 

Each information contains 178 data points for 1 second represented in columns. The last column 

represents the label y {1,2,3,4,5}. The response variable is y in column 179, the Explanatory 

variables are X1, X2, …..., X178 and y contains the category of the 178-dimensional input vector.  

Specifically, y in {1, 2, 3, 4,5}: 5 - eyes open, EEG signal of the brain has been 

recorded when the patient`s eyes are open, 4 - EEG signal of the brain has been recorded when the 

patient`s eyes are closed, 3 - Identifies region of the tumor in the brain and recording the EEG 

activity from the healthy brain area, 2 - EEG from the area where the tumor is located, 1 - Recording 

of seizure activity. All of the subjects in classes 2, 3, 4, and 5 have never had an epileptic seizure. 

Only class 1 subjects develop epileptic seizures. 

Comparison analysis of four metrics to evaluate the disease diagnosis performance by 

means of Sensitivity, Specificity, Accuracy and Time complexity is evaluated. An elaborate 
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comparison is made with the proposed Polynomial Tikhonov Entropy and Kullback Vuong Logistic 

Classifier (PTE-KVLC) against the existing CE-stSENet and DNN. 

Inverse Polynomial Map Reduce Pre-processing 

During the acquisition of raw brain activity data, significant amount of noise is found 

to be added that minimizes the signal to noise ratio resulting in poor classification or compromising 

early detection. Different types of noise, like, power line noise, baseline noise electrical activity or 

human activities including eye movement and pulse of heart compromises the overall result. Hence, 

it becomes paramount to remove noise as preprocessing step from epileptic in order to increase 

Signal to Noise ratio for early disease detection.  

 
Figure 3 Structure of Inverse Polynomial Map Reduce 

Inverse Polynomial Pre-processing model is applied to remove the noise. Figure 3.3. 

shows the structure of Inverse Polynomial Map Reduce model. As illustrated in the figure, let us 

consider samples ‘𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑚’ given as input with features i.e., data points represented by 

‘𝐹 = 𝑓1, 𝑓2, … , 𝑓𝑛’ in the map phase. Here ‘𝑚’ represents the number of single subject or persons in 

the dataset and ‘𝑛’ represents the number of data points for each single subject or person. Then, the 

Data Point Matrix (DPM) corresponding to ‘𝑚’ samples and ‘𝑛’ features are mathematically 

formulated as given in the equation (3.1). 
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𝐷𝑃𝑀 = [

𝑠1𝑓1 𝑠1𝑓2 … . . 𝑠1𝑓𝑛

𝑠2𝑓1 𝑠2𝑓2 … . . 𝑠2𝑓𝑛

… . . … . . … . . … . .
𝑠𝑚𝑓1 𝑠𝑚𝑓2 … . . 𝑠𝑚𝑓𝑛

]                       (3.1) 

𝐷𝑃𝑀 a polynomial function is applied due to the reason that the brain activity changes 

at a fraction of second and monitoring those changes and pre-processing those changes remains the 

key in denoising the signals. This is performed in the shuffle section and is mathematically 

formulated as given in the equations (3.2) and (3.3). 

𝑃𝐹𝑘(𝑓, 𝑡) = 𝑓0 + ∑ 𝑓𝑖𝑡𝑖
𝑛
𝑖=1 [𝐷𝑃𝑀 ]            (3.2) 

 

𝑊𝑗 = 𝑃𝐹𝑘(𝑓, 𝑡) sin(𝜔𝑡𝑖 + 𝛼)             (3.3) 

The polynomial function ‘𝑃𝐹𝑘’ is first equated for each features ‘𝑓𝑖’ i.e. data points 

recorded at different time intervals ‘𝑡𝑖’ is given in the equation (3.2). Then from equation (3.3), the 

wave for each sample is measured using frequency ‘𝜔’ and phase shift ‘𝛼’ corresponding to ‘𝑘’ 

degree polynomials. The pre-processed features or data points recorded in the reduced phase are 

mathematically formulated using equations (3.4) and (3.5).  

𝐷𝑃𝑀𝑖
𝑇𝑔 = (𝐷𝑃𝑀𝑖

𝑇 , 𝐷𝑃𝑀𝑖)𝑓 ∗ 𝑊𝑗                      (3.4) 

 

𝑔 =
(𝐷𝑃𝑀𝑖

𝑇,𝐷𝑃𝑀𝑖)𝑓

𝐷𝑃𝑀𝑖
𝑇 = (𝐷𝑃𝑀𝑖)𝑓 ∗ 𝑊𝑗          (3.5) 

 

‘𝑔’ returns the pre-processed features from equations (3.4) and (3.5) i.e., pre-

processed data points in the reduced phase and is recorded as output. The pseudo code representation 

of Inverse Polynomial Map Reduce Pre-processor is given in the Figure 3.4.  

Input: samples ‘𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑚’, features ‘𝐹 = 𝑓1, 𝑓2, … , 𝑓𝑛’ 

Output: Computationally efficient pre-processed features ‘𝑔’ 

1: Initialize ‘𝑚’, ‘𝑛’ frequency ‘𝜔’, phase shift ‘𝛼’ 

2: Begin 

3: For each sample ‘𝑆’ with features ‘𝐹’ 

4: Obtain the data point matrix as given in equation (3.1) 

5: Evaluate polynomial function using equation (3.2) 

6: Measure wave corresponding to ‘𝑘’ degree polynomials using equation (3.3) 

7: Evaluate pre-processed features using equation (3.5) 

8: Return (pre-processed features) 

9: End for  

10: End  
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Algorithm of Inverse Polynomial Map Reduce Preprocessing 

Inverse Polynomial Map Reduce Pre-processor is used to reduce the signal to noise 

ratio by means of Inverse Polynomial function. Since, big data is involved for analysis, a parallel 

processing using MapReduce is used and the Inverse Polynomial function is applied to pre-process 

computationally efficient features by minimizing the signal to noise ratio. It is achieved by deriving 

the polynomial function for each sample set and inversing the data point matrix. Feature or data 

point extraction with optimal class variance i.e., high inter-class variance and low intra-class 

variance are performed using the resultant pre-processed features.  

Tikhonov Entropy-based Feature Extraction  

After preprocessing of raw brain activity data, features or data points are extracted for 

early prediction. Features are said to be extracted in two ways, one is by extracting hand-crafted 

features and the other is automated feature extraction. In proposed work, automated features 

extraction or automated data point extraction using Tikhonov Entropy-based Feature extraction 

model is performed for extracting features or data points with high inter-class variance. Figure 4 

shows the flow diagram of Tikhonov Entropy-based Feature extraction model.  

 

 

 

 

 

 

 

 

 

Figure 4 Flow diagram of Tikhonov Entropy-based Feature Extraction 

As illustrated in the flow diagram, with the pre-processed vector ‘𝑔(𝑖)’ and a 

permutation pattern ‘𝜋𝑖’ with ‘𝑖 = 1,2, … 𝑛!’, the permutation probability for all ‘𝑖 = 1,2, … 𝑛!’ is 

defined as the probability that a pre-processed vector has the same feature pattern or data points as 

the permutation feature pattern. This is mathematically formulated as given in the equation (3.6).  

𝑃𝑟𝑜𝑏 (𝜋𝑖) = ∑ 𝑓(𝑔(𝑖), 𝜋𝑖)    (3.6) 
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where ‘𝑓(𝑔(𝑖), 𝜋𝑖) = 1’, when ‘𝑔(𝑖), 𝜋𝑖’ possess the same feature pattern and zero 

otherwise. In case of zero, Tikhonov regularization is applied with the objective of obtaining only 

few feature patterns. By applying both permutation-based entropy and regularization, optimal class 

variance is ensured. Let us consider a pre-processed feature matrix ‘(𝐷𝑃𝑀𝑖)𝑓’ and vector ‘𝑔’ in the 

equation (3.7).  

(𝐷𝑃𝑀𝑖)𝑓 ∗ 𝑊𝑗 = 𝑔       (3.7) 

The Tikhonov regularization is represented in the equation (3.8). 

[(𝐷𝑃𝑀𝑖)𝑓 ∗ 𝑊𝑗 − 𝑔]
𝑃

2
+ [𝑞 − 𝑞0]𝑄

2                          (3.8) 

where, ‘𝑃’ refers to the inverse covariance matrix of ‘𝑔’, ‘𝑞0’ is the expected value of 

‘𝑞’ and ‘𝑄’ referring to the inverse covariance matrix of ‘𝑞’. Then, with the aid of regularization, an 

optimal solution ReliefF ‘(𝑅𝐹)’ is obtained using the equation (3.9).  

𝑅𝐹 = [(𝐷𝑃𝑀𝑖)𝑓
𝑇𝑃 + 𝑄]

−1
                               (3.9) 

where, ‘𝑅𝐹’ returns the extracted features i.e. extracted data points and is recorded as 

output. The pseudo code representation of Tikhonov Entropy-based Feature extraction is given in 

the Figure 3.6.  

Input: Pre-processed features ‘𝑔 = 𝑔1, 𝑔2, … , 𝑔𝑛’ 

Output: Robust feature extraction ‘𝑅𝐹 = 𝑟𝑓1, 𝑟𝑓2, … , 𝑟𝑓𝑛’ 

1: Begin 

2: For each Pre-processed feature ‘𝑔’ 

3: Evaluate permutation feature pattern using equation (3.6) 

4: If ‘𝑓(𝑔(𝑖), 𝜋𝑖) = 1’  

5: Similar feature pattern 

6: End if 

7: If ‘𝑓(𝑔(𝑖), 𝜋𝑖) = 0’  

8: Evaluate Tikhonov regularization using equation (3.8) and equation (3.9) 

9: End if 

10: Return (robust features) 

11: End for  

12: End  

Algorithm of Tikhonov Entropy-based Feature Extraction 

Kullback–Leibler Vuong Logistic Regressive Classifier for Disease diagnosis  

Once the features or data points have been extracted from pre-processed features, the 

final step is to perform classification between seizure recognition or not. Kullback–Leibler Vuong 

Logistic Regressive Classifier is applied to the extracted features for early disease diagnosis. Let us 

consider two predictors ‘𝑝1’ and ‘𝑝2’ i.e., response variable is ‘𝑦’ in column 179, ‘𝑝1 = 1’ and ‘𝑝2 =
4’ and one Bernoulli response variable, ‘𝑌 = 1’ (𝑟 = 𝑃𝑟𝑜𝑏(𝑌 = 1)). Equations (3.10) and (3.11) 

represents the logit function. 
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𝑙 = 𝑙𝑜𝑔𝑏 [
𝑟

1−𝑟
]    (3.10) 

 

𝑙 = 𝛼0 + 𝛼1𝑝1 + 𝛼2𝑝2   (3.11) 

where, ‘𝑙’ refers to the logit function with ‘𝑏’ denoting the base of the logarithm and 

‘𝛼’ referring to the robust features ‘𝑅𝐹’ respectively. The likelihood ratio is evaluated by means of 

Kullback–Leibler Function (KLF) in the equation (3.12).  

𝐾𝐿𝐹 =
𝐿𝑅𝑁(𝛼𝑝1 ,𝛼𝑝2)

√𝑁𝜔𝑁
    (3.12) 

The Kullback–Leibler function ‘𝐾𝐿𝐹’ is evaluated via Likelihood Ratio ‘(𝐿𝑅)’ with 

respect to two predictors ‘𝛼𝑝1
’ and ‘𝛼𝑝2

’ to the sample variance ‘𝜔𝑁’ respectively. Finally, the Log 

Likelihood Ratio ‘(LLRi)’ for accurate classification forming for early diagnosis is mathematically 

formulated as given in the equation (3.13).  

LLRi = log
𝑓1(𝑦𝑖| 𝑅𝐹𝑖,𝛼𝑝1)

𝑓2(𝑦𝑖| 𝑅𝐹𝑖,𝛼𝑝2)
    (3.13) 

 

Early epileptic disease diagnosis is accomplished using the aforementioned Log 

Likelihood Ratio and accurate classification. The pseudo code representation of Kullback–Leibler 

Vuong and Logistic Classifier is illustrated in the Figure 3.7.  

Input: feature extracted ‘𝑅𝐹 = 𝑟𝑓1, 𝑟𝑓2, … , 𝑟𝑓𝑛’ 

Output: Early disease prediction  

1: Initialize ‘𝑝1’ and ‘𝑝2’ 

2: Begin 

3: For each feature extracted ‘𝑅𝐹’ 

4: Evaluate logit function using equations (3.10) and (3.11) 

5: Evaluate Kullback–Leibler function using equation (3.12) 

6: Measure log likelihood ratio using equation (3.13) 

7: Return classified results  

8: End for 

9: End  

Algorithm of Kullback–Leibler Vuong Logistic Classifier 

As stated in the Kullback–Leibler Vuong Logistic Classifier algorithm, for each 

extracted feature, three functions are applied for early epileptic disease diagnosis. First, a logit 

function that differentiates between the predictors precisely. Second, with the application of 

Kullback–Leibler function likelihood ratio is evaluated for the overall sample variance. Finally, 

accurate classification is done via log likelihood ratio, paving way for early disease diagnosis.  
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RESULTS AND DISCUSSION 

In the experiments, the Kullback–Leibler Vuong and Logistic Classifier algorithm is 

implemented by java program language and Map Reduce parallel programming model via Cloudsim 

Simulating environment. The version of 1.1.2 is adopted for Hadoop cluster. In the clusters, one 

node acts as the master and the others act as slaves having the hardware configuration, namely Core2 

Duo CPU @ 2.20GHz, 2 CPUs and 8GB of RAM. The nodes are connected by the network with the 

bandwidth of 100M/s. SUN JAVA JDK1.6.0_24 trained on: 

https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition. 

Performance Analysis of Sensitivity 

The first metric to analyze the diagnosis of disease is sensitivity. The sensitivity 

evaluates the ratio of actual positives that are correctly identified as such e.g., the percentage of 

diseased samples identified as having the condition. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (3.14) 

 

From the above equation (3.14), sensitivity ‘𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦’, is measured as the ratio of 

True Positive ‘(𝑇𝑃)’ to the summation of True Positive and False Negative (FN), ‘𝑇𝑃 + 𝐹𝑁’ 

respectively. Here, True Positive refers to the not diseased samples correctly identified as not 

diseased and False Negative refers to the not diseased samples incorrectly identified as diseased 

samples. The results of sensitivity are reported in Table 3.2. 

Table 1 Tabulation of Sensitivity  

Number 

of 

Samples 

Sensitivity (%) 

DNN CE-stSENet PTE-KVLC 

1100 95.06 96.47 96.87 

2200 92.30 94.59 94.91 

3300 91.30 94.23 95.20 

4400 91.07 94.04 95.67 

5500 89.47 92.68 94.23 

6600 89.02 93.0 93.89 

7700 87.71 91.59 92.31 

8800 86.88 90.47 91.60 

9900 85.82 89.85 90.48 

11000 85.71 89.74 91.03 
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Figure 5 Graphical representation of Sensitivity  

Table 1 and Figure 5 depicts the rate of sensitivity with respect to 11000 samples 

provided as input using Epileptic Seizure Recognition dataset. Here 11000 samples first refer to the 

five different folders each with 100 files and 4097 data points in 23 chunks, 23 * 500 = 11500 

samples. For simulation purpose, 11000 samples have been considered and the sensitivity is 

measured accordingly. From the Figure 3.8, it is illustrative that comparison made with the proposed 

method PTE-KVLC shows better results with 96.87% non-diseased samples correctly identified as 

non-disease out of 100, and 96.47%, 95.06% using CE-stSENet and DNN respectively. From these 

results improvement is observed using PTE-KVLC than when compared to CE-stSENet and DNN. 

This is because of the application of Inverse Polynomial Map Reduce Pre-processor algorithm. By 

applying this algorithm, not only the signal to noise ratio is minimized via Inverse Polynomial 

function, but also computationally efficient features are obtained via optimal class variance. With 

these two features, sensitivity is improved using PTE-KVLC by 1.03% compared to CE-stSENet 

and 4.67% compared to DNN.  

Performance Analysis of Specificity 

The second metric to diagnose disease is specificity. Specificity measures the ratio of 

actual negatives that are correctly identified as such e.g., the percentage of diseased samples that are 

correctly identified as not having the condition. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                       (3.15) 
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From the above equation (3.15), specificity ‘𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦’ is measured based on the 

True Negative ‘𝑇𝑁’ and the summation of True Negative ‘𝑇𝑁’ and False Positive ‘𝐹𝑃’ respectively. 

It is measured in terms of percentage (%). Here, True Negative refers to the normal samples correctly 

identified as normal and False Positive refers to the normal samples incorrectly identified as diseased 

samples. The results of specificity are reported in Table 3.7. 

 

Table2  Tabulation of Specificity  

Number 

of 

Samples 

Specificity (%) 

DNN CE-stSENet PTE-KVLC 

1100 79.31 80.0 85.39 

2200 77.77 83.33 83.97 

3300 70.00 71.42 73.06 

4400 71.87 75.20 78.57 

5500 70.58 71.42 72.13 

6600 68.00 68.75 69.18 

7700 65.00 65.71 65.86 

8800 66.66 68 69.07 

9900 68.75 70 70.68 

11000 67.64 68.75 69.54 

 

 

Figure 6 Graphical representation of Specificity  

Table 2 and Figure 6 shows the specificity rate with respect to 11000 different samples 

collected at different time periods, with each file recording brain activity for 23.6 seconds using 
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Epileptic Seizure Recognition dataset. Figure 3.9 illustrates that the specificity rate is inversely 

proportionate to the samples considered for simulation. Despite, improvement is found using PTE-

KVLC when compared to CE-stSENet and DNN via simulations. With 1100 samples considered for 

simulation, 880 normal samples were correctly identified as normal using PTE-KVLC out of 900 

normal samples and 870, 860 using CE-stSENet and DNN. From the simulation results it is inferred 

that specificity is better using PTE-KVLC than CE-stSENet and DNN. This is because of the 

application of Tikhonov Entropy-based Feature extraction algorithm. The robust features are said to 

be extracted by applying permutation-based entropy to the pre-processed signals i.e. data points and 

the entropy results regularization of the features or data points is made via Tikhonov function. With 

these two features the specificity is said to be better using PTE-KVLC method by 2.06% compared 

to CE-stSENet and 4.52% compared to DNN respectively.  

Performance Analysis of Accuracy  

Accuracy is mathematically formulated as given in the equation (3.16). 

𝐴𝑐𝑐 =  
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
      (3.16) 

where, accuracy ‘𝐴𝑐𝑐’ is measured based on the ratio of the summation of True 

Negative, True Positive ‘𝑇𝑁 + 𝑇𝑃’ and the summation of True Negative, True Positive, False 

Negative and False Positive ‘𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃’ respectively. It is measured in terms of 

percentage (%).  

Table 3 Tabulation for Accuracy 

Number 

of 

Samples 

Accuracy (%) 

DNN CE-stSENet PTE-KVLC 

1100 90.90 92.72 95.18 

2200 86.36 90.90 93.67 

3300 84.84 89.39 94.01 

4400 84.09 88.86 93.15 

5500 83.63 87.27 92.76 

6600 81.06 87.12 90.81 

7700 81.81 85.71 88.29 

8800 80.68 84.09 85.94 

9900 80.30 83.83 85.39 

11000 80.90 83.63 83.87 
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Figure 7 Graphical representation of Accuracy 

Table 3 and Figure 7 represent the accuracy. Accuracy is measured based on the True 

Positive i.e., non-diseased samples correctly identified as non-diseased, True Negative i.e., diseased 

samples correctly identified as diseased, i.e., False Positive diseased samples incorrectly identified 

as non-diseased and False Negative i.e., non-diseased samples incorrectly identified as diseased 

samples. The accuracy results from the graphical representation provide the better results using PTE-

KVLC than compared to CE-stSENet and DNN.  

The simulations performed for 11000 samples shows better accuracy results using 

PTE-KVLC with the incorporation of Kullback–Leibler Vuong Logistic Classifier algorithm. By 

applying the algorithm, accurate and precise classification results are said to be arrived by first 

applying logit function. With this function, differentiation between the predictors is made in a 

significant manner. Also, via Kullback–Leibler function with log likelihood ratio, disease diagnosis 

is made effectively. With this the accuracy rate is improved using PTE-KVLC by 3.39% compared 

to CE-stSENet and 8.2% compared to DNN respectively.  

Comparison of Time Complexity  

It is defined as the amount of time taken by the algorithm to identify the disease based 

on the classification. The overall Time Complexity is measured using the following equation (3.17) 

𝑇𝐶 = 𝑛 ∗ [𝑡𝑖𝑚𝑒(𝐶𝑂𝑆)]                        (3.17) 

Where 𝑇𝐶 denotes a time complexity, 𝑛 represents the number of samples, 

𝑡𝑖𝑚𝑒(𝐶𝑂𝑆) denotes a time for classifying one sample. The overall time complexity is measured in 

the unit of milliseconds (ms).  
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Table 4  Evaluation of Time Complexity 

Number 

of 

Samples  

Time Complexity (ms) 

DNN CE-stSENet PTE-KVLC 

1100 45 42 39 

2200 55 51 47 

3300 69 59 57 

4400 75 67 66 

5500 80 74 71 

6600 89 83 79 

7700 95 89 86 

8800 101 96 95 

9900 110 105 102 

11000 120 113 108 

Table 4 describes the performance analysis of the time complexity of disease 

diagnosis versus the number of input samples taken in the counts from 1100 to 11000. While 

increasing the input samples, the time complexity gets increased for all the classification methods. 

But comparatively, the proposed PTE-KVLC technique achieves lesser time complexity than the 

others. Let us consider the 1100 samples, the time taken to classify the input sample is 39𝑚𝑠 by 

using the PTE-KVLC technique. The proposed PTE-KVLC technique is compared to the time 

consumption of the existing results. The average time complexity of the PTE-KVLC technique is 

considerably minimized by 5𝑚𝑠 and 12𝑚𝑠 when compared to CE-stSENet and DNN respectively.  

 

Figure 8 Graphical representation of Time Complexity  

Figure 8 exhibits the performance results of the time complexity with respect to a 

number of samples taken from the Epileptic Seizure Recognition dataset.  The graphical result 
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visibly illustrates that the PTE-KVLC technique reduces the prediction time than the existing disease 

diagnosis methods. Permutation based entropy and Tikhonov regularization function extracts the 

robust features to identify the Epileptic Seizure Recognition Data Set. Generally, the big dataset 

consists of a large number of features and it leads to more complexity of disease identification. With 

the smaller number of selected features, the PTE-KVLC technique consumes minimum time to 

perform the disease prediction. 

  CONCLUSION  

A Polynomial Tikhonov Entropy and Kullback-Leibler Vuong Logistic Classifier is 

proposed for epileptic seizure disease diagnosis. First, an Inverse Polynomial Pre-processing model 

is used to denoise the data points and increase class variance via Map Reduce parallel processing to 

improve epilepsy disease diagnosis. Second, using a Tikhonov Entropy-based Feature extraction, a 

significant feature selection model is created. Permutation-based entropy and Tikhonov 

regularization is utilized to extract robust features with optimal class variance. Besides, Kullback–

Leibler Vuong Logistic Regressive classification technique is employed to classify epileptic seizure 

classes, and the Kullback–Leibler function effectively increases mapping performance when 

compared to manually predicted features. In the experimental study, the proposed work delivered a 

comparatively better performance by means of Sensitivity, Specificity, Accuracy and Time 

Complexity compared to the existing works. 
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