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ABSTRACT  
         We consider a discrete time retrial queue with customer displacement, Bernoulli vacation and possibility of 

changing the remaining vacation period. If an arriving customer finds the server to be free, his service commences 

immediately. On the other hand, if the server is found to be busy, the customer either displaces the customer at service 

with probability 𝜃  to start his service or decides to join the pool of blocked customers with complementary 

probability �̅� to retry for service after a random period of time. Upon completion of a service, the server chooses to 

go on vacation with probability 𝑝 or continues to serve the next customer with complementary probability �̅�. During 

a vacation period, changes in remaining vacation times are permitted based on requirements. A detailed study of the 

system is performed. Using the probability generating function approach the probability generating functions of the 

orbit size and system size are derived. The effect of the parameters on the performance measures are analytically 

derived and numerically validated. Stochastic decomposition property has been established for the system size. 

 

KEYWORDS: Discrete Time Queues, Customer Retrial, Displacement, Vacation, Changes in 

Vacation Times.  

 

INTRODUCTION 
Retrial queues are characterised by the feature that upon arrival if the server is not available to 

serve him immediately(may be busy serving other customers or on vacation), the arriving 

customer will join the orbit and try for his service after some random amount of time. There arise 

several situations where the server alternates between an active mode and an inactive mode. The 

server may be assigned some other work as soon as the busy period ends, the server may not be 

waiting for customers after completing the service of the last customers in the system. This type of 

queueing situation where the server may not be available for the next customer who arrives to an 

empty system is referred to as a queueing system with vacations. Retrial vacation queues are found 

to have applications in telephone switching systems, telecommunication networks, computer 

networks, manufacturing systems etc., as retrying for service is a general phenomenon in all these 

situations. The research in the areas of retrial queues and queues with vacation have focused 

primarily on the continuous time models. However, some real time situations such as wireless 

sensor networks and digital communication systems which operate on a discrete time basis where 

the events can happen only at regularly spaced time epochs made the discrete time retrial queues 

more suitable for analysis. Further, due to it’s broader applicability in the performance analysis of 

production and inventory systems and telecommunication networks including the Broadband 

Services Digital Network(B-ISDN) which operates on Asynchronous Transfer Mode(ATM) and 

in related fields, the discrete time vacation queueing systems have attracted both queueing 

theorists and Electronics and Communication Engineers rapidly. 
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Focusing on a sensor node in a WSN, the node itself can be viewed as a server and the messages as 

customers. The random times at which the node senses a data would be the arrival process and the 

transmission times would be the service process. The time the sensor node is being idle (sleep 

mode) can be taken as the vacation period. The sleep mode can be extended if there are no data 

packets to be transmitted which will save the battery power. Further, when one message is being 

processed in a sensor node there may be a new message arriving to that node which may be more 

important than the one being processed. In such case the message under processing will be made to 

wait and the arrived message is transmitted immediately. On the other hand the arriving message 

enters the buffer(orbit) to try again later. In many such applications the sensor nodes are deployed 

in distant, unattended and hostile environment with large quantities and the size of the sensor node 

is made to be very small. It is usually difficult to recharge or replace their batteries as most of the 

sensor nodes are equipped with non-rechargeable batteries that have limited lifetime. We attempt 

to use the discrete time retrial queue to model such a WSN.  

 

REVIEW OF RELATED LITERATURE 

 

Discrete time retrial queues are investigated by many researchers in the recent years. Frank, L. 

(2017) and Tsaklidis, G. & Vasiliadis, G. (2011) have explored discrete time queues. Nobel(2016) 

presented a survey on retrial queueing models in discrete time. An overview of queueing systems 

with vacations can be found in Upadhyaya(2016). Discrete time queues with vacation have been 

studied by Alfa(1995, 1998, 2003) and he has given some decomposition results (Alfa(2014))for a 

class of vacation queues. Atencia(2016) investigated a discrete time queueing system with 

vacations wherein he has considered the possibility of altering the vacation duration. In the recent 

years, there has been an increasing interest in the study of queues with service interruptions and 

priorities. Queueing systems with service interruptions are discussed by Krishnamoorthy et. 

al.,(2012), Krishnamoorthy et. al.,(2013) and Atencia(2015). Wu et. al., (2013) have investigated a 

discrete time retrial queue with preferred and impatient customers. Imen Bouazzi et. al., (2017) 

and Ke et. al.,(2015) have experimentally shown that the energy consumption in the WSNs can be 

reduced and important data can be transmitted with less packet delay. 

 

In this paper, we analyse a discrete time retrial queueing system with customer displacement and 

change of vacation which may be applied for energy conservation and transmitting the important 

messages with less delay in wireless sensor networks. The messages sensored by sensor nodes are 

of various levels of importance. A right judgement of the priority of packets according to the 

importance/urgency of data may reduce the delay of transmission of the important/urgent 

information. That is, the real time emergency messages should be delivered to the sink node with 

the shortest possible end to end delay. We assume displacement of customer by which the delivery 

order of the data packets is changed based on their importance. The assumption that the vacation 

period can be shortened or elongated ensures the time period the transmitter is in the sleep mode 

may be shortened if any messages have arrived before the end of the vacation period (sleep period) 

or extended if no further messages have arrived at the end of the sleep period. It is shown by 

numerical illustrations that this assumption reduces the energy consumption thus extending the life 

time of the WSNs. 

 

The rest of the paper is arranged as follows. Section 2 gives a brief discussion of the model under 

study. In section 3, we discuss the Markov chain of the system and exhibit the probability 
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generating functions of the system in the idle state, busy state and vacation state. The PGF of the 

orbit size and system size have been derived. Some of the marginal generating functions have been 

presented and performance measures are derived. Section 4 enumerates some of the performance 

measures of the system. In Section 5, the stochastic decomposition of the system size is 

established. Section 6 gives the numerical results which are analogous to the analytical derivations 

followed by conclusion in Section 7.  

 

THE MODEL 
We consider a discrete time retrial queue where the time axis is partitioned into small subintervals 

of fixed length called slots. All queueing activities like arrival, departure, retrial, beginning/end of 

vacation etc., are assumed to occur only at the slot boundaries. Since in discrete time systems 

many events may occur concurrently, we need to clearly specify the order of occurence of the 

activities. An early arrival policy is considered in this study where the departures and end of 

vacations occur in sequence in (𝑚−, 𝑚) and primary arrivals, retrials, beginning of vacations occur 

in (𝑚, 𝑚+) in sequence. Since service always starts and ends at the slot boundaries, service times 

will be integral multiples of the slot lengths. 

 

Primary arrivals are described by means of a geometric process with parameter 𝑎 > 0, where 𝑎 is 

the probability that an arrival occurs in a slot, with a maximum of one arrival per slot. Upon arrival 

if the server is free, the service of the customer is started immediately. On the contrary, if the 

server is busy the primary arrival either displaces the customer at service with probability 𝜃 to 

start his service or decides to join the pool of blocked customers with complementary probability 

�̅� to retry for service after a random period of time. After a service completion, the server decides 

with probability 𝑝 to go on vacation and with probability �̅�(= 1 − 𝑝) continues to provide 

service to the next customer. When there are no customers in the system, the server does not go on 

a vacation immediately. He chooses to go on a vacation with probability 𝑝 or decides to wait for 

the next arrival with probability �̅�. Upon arrival, if the server is found to be on vacation, the 

primary arrival joins the orbit to retry at a later instant. During a vacation period, changes in the 

number of remaining vacation slots is permitted with probability 𝜈. It is reasonably assumed that 

in the slot in which vacation begins there is no change in the vacation slots. 

 

The retrial times, service times and vacation times are assumed to follow general distributions 

{𝑟𝑖}𝑖=0
∞ , {𝑠𝑖}𝑖=1

∞  and {𝜈𝑖}𝑖=1
∞  with probability generating functions              𝑅(𝑥) = ∑∞

𝑖=0 𝑟𝑖𝑥
𝑖 , 

𝑆(𝑥) = ∑∞
𝑖=1 𝑠𝑖𝑥𝑖 and 𝑉(𝑥) = ∑∞

𝑖=1 𝜈𝑖𝑥𝑖 respectively. It is assumed that service times, vacation 

times and retrial times are independent and identically distributed. In an attempt to avoid trivial 

cases, we assume that, 0 < 𝑝 < 1, 0 < 𝜃 < 1, 0 < 𝜈 < 1.  

 

STEADY STATE DISTRIBUTION 
At time 𝑚+, the instant immediately after time slot 𝑚, the system can be described by the process 

𝑌𝑚 = (𝐶𝑚, 𝜉0,𝑚, 𝜉1,𝑚, 𝜉2,𝑚, 𝑁𝑚), where 𝐶𝑚 represents the server state 0, 1 or 2 according to the 

server being free, busy or on vacation respectively. 𝑁𝑚 denotes the number of customers in the 

orbit. If 𝐶𝑚 = 0 and 𝑁𝑚 > 0 then 𝜉0,𝑚  denotes the remaining retrial time. If 𝐶𝑚 = 1, 𝜉1,𝑚 

corresponds to the remaining service time of the customer being served. If 𝐶𝑚 = 2 and 𝑁𝑚 > 0 

then 𝜉2,𝑚 gives the remaining vacation slots. It can be proved that {𝑌𝑚: 𝑚 ∈ 𝑁} is the Markov 

chain of the queueing system , whose state space is: 
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{{(0,0)} ∪ {(0, 𝑖, 𝑘): 𝑖 ≥ 1, 𝑘 > 0} ∪ {(1, 𝑖, 𝑘): 𝑖 ≥ 1, 𝑘 ≥ 0} ∪ {(2, 𝑖, 𝑘): 𝑖 ≥ 1, 𝑘 ≥ 0}}. 

 

In order to obtain the stationary distribution of the process, we define the stationary 

probabilities of the Markov chain 𝑌𝑚 as follows: 

 

𝜋0,0 = lim𝑚→∞𝑃[𝐶𝑚 = 0; 𝑁𝑚 = 0], 
𝜋𝑗,𝑖,𝑘 = lim𝑚→∞𝑃[𝐶𝑚 = 𝑗; 𝜉𝑗,𝑚 = 𝑖; 𝑁𝑚 = 𝑘], 𝑗 = 1,2, 𝑖 ≥ 1, 𝑘 ≥ 0; 𝑗 = 0, 𝑘 > 0. 

 

The Kolmogorov equations for the stationary distribution are given as follows:  

 𝜋0,0 = 𝑎𝜋0,0 + 𝑎𝑝𝜋1,1,0 + 𝑎𝜋2,1,0, (1) 

 

 𝜋0,𝑖,𝑘 = 𝑎𝜋0,𝑖+1,𝑘 + 𝑎𝑝𝑟𝑖𝜋1,1,𝑘 + 𝑎𝑟𝑖𝜋2,1,𝑘,    𝑖 ≥ 1, 𝑘 ≥ 1, (2) 

 

𝜋1,𝑖,𝑘 = 𝑎𝛿0,𝑘𝑠𝑖𝜋0,0 + (1 − 𝛿0,𝑘) ∑∞
𝑗=1 𝑎𝑠𝑖𝜋0,𝑗,𝑘 + 𝑎𝑠𝑖𝜋0,1,𝑘+1 + 𝑎𝑠𝑖𝑝𝜋1,1,𝑘 +

+𝑎𝑟0𝑝𝑠𝑖𝜋1,1,𝑘+1 + 𝑎𝑠𝑖𝜋2,1,𝑘 + (1 − 𝛿0,𝑘)𝑎𝜃𝜋1,𝑖+1,𝑘−1 + 𝑎𝜋1,𝑖+1,𝑘 + 𝑎𝑟0𝑠𝑖𝜋2,1,𝑘+1 +

+(1 − 𝛿0,𝑘) ∑∞
𝑗=2 𝑎𝜃𝑠𝑖𝜋1,𝑗,𝑘−1,    𝑖 ≥ 1, 𝑘 ≥ 0 (3) 

 

 
𝜋2,𝑖,𝑘 = 𝑎𝑝𝑣𝑖(1 − 𝛿0,𝑘)𝜋1,1,𝑘−1 + �̅�𝑝𝑣𝑖𝜋1,1,𝑘 + (1 − 𝛿0,𝑘)𝑎�̅�𝜋2,𝑖+1,𝑘−1

+�̅��̅�𝜋2,𝑖+1,𝑘 + (1 − 𝛿0,𝑘) ∑∞
𝑗=2 𝑎𝜈𝑣𝑖𝜋2,𝑗,𝑘−1 + ∑∞

𝑗=2 �̅�𝜈𝑣𝑖𝜋2,𝑗,𝑘,    𝑖 ≥ 1, 𝑘 ≥ 0,
 (4) 

 

 where 𝑎 = 1 − 𝑎; 𝜈 = 1 − 𝜈; 𝑝 = 1 − 𝑝; 𝜃 = 1 − 𝜃 and 𝛿𝑖,𝑗 denotes Kronecker delta. 

 

The normalisation condition is 

 

𝜋0,0 + ∑∞
𝑖=1 ∑∞

𝑘=1 𝜋0,𝑖,𝑘 + ∑∞
𝑖=1 ∑∞

𝑘=0 𝜋1,𝑖,𝑘 + ∑∞
𝑖=1 ∑∞

𝑘=0 𝜋2,𝑖,𝑘 = 1.  

 

To solve equations (1) to (4), we define the following generating functions: 

 

𝜙0(𝑥, 𝑧) = ∑∞
𝑖=1 ∑∞

𝑘=1 𝜋0,𝑖,𝑘𝑥𝑖𝑧𝑘,   𝜙1(𝑥, 𝑧) = ∑∞
𝑖=1 ∑∞

𝑘=0 𝜋1,𝑖,𝑘𝑥𝑖𝑧𝑘.   

 

and  𝜙2(𝑥, 𝑧) = ∑∞
𝑖=1 ∑∞

𝑘=0 𝜋2,𝑖,𝑘𝑥𝑖𝑧𝑘.   

 

Also the auxiliary generating functions are defined as: 

 

𝜙0,𝑖(𝑧) = ∑∞
𝑘=1 𝜋0,𝑖,𝑘𝑧𝑘,  𝑖 ≥ 1, 𝜙1,𝑖(𝑧) = ∑∞

𝑘=0 𝜋1,𝑖,𝑘𝑧𝑘,  𝑖 ≥ 1, 

 

and  𝜙2,𝑖(𝑧) = ∑∞
𝑘=0 𝜋2,𝑖,𝑘𝑧𝑘,  𝑖 ≥ 1. 

 

In the process of deriving the above auxiliary generating functions, multiplying equations 

(2) to (4) by 𝑧𝑘 and summing over all values of 𝑘, we get  

 

 𝜙0,𝑖(𝑧) = 𝑎[𝜙0,𝑖+1(𝑧) + �̅�𝑟𝑖𝜙1,1(𝑧) + 𝑟𝑖𝜙2,1(𝑧)] − 𝑎𝑟𝑖𝜋0,0,    𝑖 ≥ 1, (5) 
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𝜙1,𝑖(𝑧) =
𝑎𝑠𝑖

𝑧
𝜙0,1(𝑧) + [(

�̅�𝑟0+𝑎𝑧

𝑧
)𝑝 − 𝑎𝜃𝑧]𝑠𝑖𝜙1,1(𝑧) + [�̅� + 𝑎�̅�𝑧]𝜙1,𝑖+1(𝑧) + 𝑎𝑠𝑖𝜙0(1, 𝑧)

+𝑎𝑧𝜃𝑠𝑖𝜙1(1, 𝑧) + [
�̅�𝑟0+𝑎𝑧

𝑧
]𝑠𝑖𝜙2,1(𝑧) + 𝑎(

𝑧−𝑟0

𝑧
)𝑠𝑖𝜋0,0,    𝑖 ≥ 1,

 (6) 

 
𝜙2,𝑖(𝑧) = [�̅� + 𝑎𝑧][𝑝𝜈𝑖𝜙1,1(𝑧) + �̅�𝜙2,𝑖+1(𝑧) + 𝜈𝜈𝑖𝜙2(1, 𝑧) − 𝜈𝜈𝑖𝜙2,1(𝑧)],    𝑖 ≥ 1. (7) 

 

To derive the generating functions from the above auxiliary generating functions, 

multiplying (5) to (7) by 𝑥𝑖 and summing over all values of 𝑖,  

 
(𝑥−𝑎)

𝑥
𝜙0(𝑥, 𝑧) = [𝑅(𝑥) − 𝑟0][𝑎𝑝𝜙1,1(𝑧) + 𝑎𝜙2,1(𝑧) − 𝑎𝜋0,0] − �̅�𝜙0,1(𝑧), (8) 

 

 
(𝑥−𝛽(𝑧))

𝑥
𝜙1(𝑥, 𝑧) = [[(

�̅�𝑟0+𝑎𝑧

𝑧
)𝑝 − 𝑎𝜃𝑧]𝑆(𝑥) − 𝛽(𝑧)]𝜙1,1(𝑧) + 𝑎(

𝑧−𝑟0

𝑧
)𝑆(𝑥)𝜋0,0

    +𝑎𝑆(𝑥)𝜙0(1, 𝑧) +
�̅�

𝑧
𝑆(𝑥)𝜙0,1(𝑧) + 𝑎𝜃𝑧𝑆(𝑥)𝜙1(1, 𝑧) + (

�̅�𝑟0+𝑎𝑧

𝑧
)𝑆(𝑥)𝜙2,1(𝑧),

  (9) 

 

 
(𝑥−(�̅�+𝑎𝑧)�̅�)

𝑥
𝜙2(𝑥, 𝑧) = (�̅� + 𝑎𝑧){𝑝𝑉(𝑥)𝜙1,1(𝑧) + 𝜈𝑉(𝑥)𝜙2(1, 𝑧) − [�̅� + 𝜈𝑉(𝑥)]𝜙2,1(𝑧)},  (10) 

 

where  𝛽(𝑧) = �̅� + 𝑎�̅�𝑧. 

 

Substituting 𝑥 = 1  in (8) and (9) respectively, we obtain the unknown functions 

𝜙0(1, 𝑧)&𝜙1(1, 𝑧) which when used in (9), we get  

 

 

 

𝑥−𝛽(𝑧)

𝑥
𝜙1(𝑥, 𝑧) = {(

[𝑧+�̅�𝑟0(1−𝑧)](1−�̅�𝑧)�̅�−𝜃𝑧2

𝑧(1−𝑧)
)𝑆(𝑥) − 𝛽(𝑧)}𝜙1,1(𝑧)

    −
𝑎(1−�̅�𝑧)𝑟0

𝑧
𝑆(𝑥)𝜋0,0 +

�̅�

𝑧
(1 − �̅�𝑧)𝑆(𝑥)𝜙0,1(𝑧)

. +
(1−�̅�𝑧)[𝑧+�̅�𝑟0(1−𝑧)]

𝑧(1−𝑧)
𝑆(𝑥)𝜙2,1(𝑧).

 (11) 

 Substituting 𝑥 = 1 in (10) to find the unknown constant 𝜙2(1, 𝑧) and replacing it again in (10), 

we obtain 

 

𝑎(1 − 𝑧) [
𝑥 − (�̅� + 𝑎𝑧)�̅�

𝑥
] 𝜙2(𝑥, 𝑧) =

= (�̅� + 𝑎𝑧){𝑝𝑉(𝑥)[1 − (�̅� + 𝑎𝑧)�̅�]𝜙1,1(𝑧)

− [𝜈𝑉(𝑥) + 𝑎(1 − 𝑧)�̅�]𝜙2,1(𝑧)}.                                       
                                                                                     (12) 

 To evaluate the auxiliary generating functions we proceed as follows: 

Substitute 𝑥 = �̅� in (8)  

 

 𝑎[𝑅(�̅�) − 𝑟0]𝜋0,0 = [𝑅(�̅�) − 𝑟0][�̅��̅�𝜙1,1(𝑧) + �̅�𝜙2,1(𝑧)] − �̅�𝜙0,1(𝑧). (13) 

 

ISSN: 0369-8963

Page 1512

PERIODICO di MINERALOGIA                                                                                                           Volume 91, No. 4, 2022

                                                                                                                                         https://doi.org/10.37896/pd91.4/91499



 Replace 𝑥 = 𝛽(𝑧) in (11)  

 
𝑎𝑟0(1−�̅�𝑧)𝑆(𝛽(𝑧))

𝑧
𝜋0,0 = {(

[𝑧+�̅�𝑟0(1−𝑧)](1−�̅�𝑧)�̅�−𝜃𝑧2

𝑧(1−𝑧)
)𝑆(𝛽(𝑧)) − 𝛽(𝑧)}𝜙1,1(𝑧)

+
�̅�

𝑧
(1 − �̅�𝑧)𝑆(𝛽(𝑧))𝜙0,1(𝑧) +

(1−�̅�𝑧)[𝑧+�̅�𝑟0(1−𝑧)]

𝑧(1−𝑧)
𝑆(𝛽(𝑧))𝜙2,1(𝑧).

 (14) 

 

 Substitute 𝑥 = (�̅� + 𝑎𝑧)�̅� in (12)  

 [𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�]𝜙2,1(𝑧) = 𝑝𝑉((�̅� + 𝑎𝑧)�̅�)[1 − (�̅� + 𝑎𝑧)�̅�]𝜙1,1(𝑧) (15) 

 

Solving equations (13), (14) and (15), the auxiliary generating functions are obtained as 

follows: 

 

 𝜙0,1(𝑧) =

𝑎𝑧[𝑅(�̅�)−𝑟0]{(1−𝑧)𝛽(𝑧)[𝜈𝑉((�̅�+𝑎𝑧)�̅�)+𝑎(1−𝑧)�̅�]−{(1−�̅�𝑧)𝐴(𝑧)−𝜃𝑧2[𝜈𝑉((�̅�+𝑎𝑧)�̅�)

+𝑎(1−𝑧)�̅�]}𝑆(𝛽(𝑧))}

�̅�𝛾(𝑧)
𝜋0,0 (16) 

 

 

 𝜙1,1(𝑧) =
𝑎(1−𝑧)(1−�̅�𝑧)𝑅(�̅�)𝑆(𝛽(𝑧))[𝜈𝑉((�̅�+𝑎𝑧)�̅�)+𝑎(1−𝑧)�̅�]

𝛾(𝑧)
𝜋0,0 (17) 

 

 

 𝜙2,1(𝑧) =
𝑎𝑝(1−𝑧)(1−�̅�𝑧)𝑅(�̅�)[1−(�̅�+𝑎𝑧)�̅�]𝑆(𝛽(𝑧))𝑉((�̅�+𝑎𝑧)�̅�)

𝛾(𝑧)
𝜋0,0 (18) 

 where,  

𝛾(𝑧) = {{[𝑧 + �̅�(1 − 𝑧)𝑅(�̅�)](1 − �̅�𝑧)𝐴(𝑧) − 𝜃𝑧2[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�]}𝑆(𝛽(𝑧)) 

−𝑧(1 − 𝑧)𝛽(𝑧)[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�]} 

 

𝐴(𝑧) = �̅�[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�] + 𝑝𝑉((�̅� + 𝑎𝑧)�̅�)[1 − (�̅� + 𝑎𝑧)(̅𝜈)] 
 

 

Substituting (16) to (18) in (8), (11) and (12) respectively, we obtain the generating 

functions: 

 

 
𝜙0(𝑥, 𝑧) = [

𝑅(𝑥)−𝑅(�̅�)

(𝑥−�̅�)𝛾(𝑧)
] × 𝑎𝑧𝑥{(1 − 𝑧)𝛽(𝑧)[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�]

+{𝜃𝑧[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�] − (1 − �̅�𝑧)𝐴(𝑧)}𝑆(𝛽(𝑧))}𝜋0,0,

 (19) 

 

 𝜙1(𝑥, 𝑧) = [
𝑆(𝑥)−𝑆(𝛽(𝑧))

𝑥−𝛽(𝑧)
] ×

𝑎𝑥(1−𝑧)(1−�̅�𝑧)𝛽(𝑧)𝑅(�̅�)[𝜈𝑉((�̅�+𝑎𝑧)�̅�)+𝑎(1−𝑧)�̅�]

𝛾(𝑧)
𝜋0,0, (20) 

 

 𝜙2(𝑥, 𝑧) = [
𝑉(𝑥)−𝑉((�̅�+𝑎𝑧)�̅�)

𝑥−(�̅�+𝑎𝑧)
] ×

𝑎𝑥𝑝�̅�(1−𝑧)(�̅�+𝑎𝑧)[1−(�̅�+𝑎𝑧)�̅�](1−�̅�𝑧)𝑅(�̅�)𝑆(𝛽(𝑧))

𝛾(𝑧)
𝜋0,0. (21) 

 

Substituting 𝑥 = 1 and 𝑧 = 1 in (19), (20), (21) and using normalisation condition, 

 

𝜋0,0 + 𝜙0(1,1) + 𝜙1(1,1) + 𝜙2(1,1) = 1, we get 𝜋0,0:   
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𝜋0,0 =
−𝛾′(1)

𝜃𝜈𝑅(�̅�)𝑉(�̅�)𝑆(�̅�+𝑎�̅�)
  (22) 

 

where,𝛾′(1) = {𝜈(�̅� + 𝑎�̅�)𝑉(�̅�) − [�̅�𝜃𝜈𝑅(�̅�)𝑉(�̅�) − 𝑎𝑝𝜃�̅� + 𝑎𝑝𝜃�̅�𝑉(�̅�) + 𝜈𝑉(�̅�)]𝑆(�̅� + 𝑎�̅�)}. 

 

We suppose that the condition −𝛾′(1) > 0 is fulfilled in the rest of the paper. 

 

The above results are summarised in the following theorem.  

 

 

Theorem 1 The generating functions of the stationary distribution of the Markov chain 

{𝑌𝑚: 𝑚 ∈ 𝑁} 

are given by: 

 

𝜙0(𝑥, 𝑧) = [
𝑅(𝑥) − 𝑅(�̅�)

(𝑥 − �̅�)
] ×

×

{𝑎𝑥𝑧{(1 − 𝑧)𝛽(𝑧)[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�]

+{𝜃𝑧[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�] − (1 − �̅�𝑧)𝐴(𝑧)}𝑆(𝛽(𝑧))}}

𝛾(𝑧)
𝜋0,0. 

 𝜙1(𝑥, 𝑧) = [
𝑆(𝑥)−𝑆(𝛽(𝑧))

𝑥−𝛽(𝑧)
] ×

𝑎𝑥(1−𝑧)(1−�̅�𝑧)𝛽(𝑧)𝑅(�̅�)[𝜈𝑉((�̅�+𝑎𝑧)�̅�)+𝑎(1−𝑧)�̅�]

𝛾(𝑧)
𝜋0,0 

 

 𝜙2(𝑥, 𝑧) = [
𝑉(𝑥)−𝑉((�̅�+𝑎𝑧)�̅�)

𝑥−(�̅�+𝑎𝑧)
] ×

𝑎𝑥𝑝�̅�(1−𝑧)(�̅�+𝑎𝑧)[1−(�̅�+𝑎𝑧)�̅�](1−�̅�𝑧)𝑅(�̅�)𝑆(𝛽(𝑧))

𝛾(𝑧)
𝜋0,0 

 

 

where:  

𝛾(𝑧) = {{[𝑧 + �̅�(1 − 𝑧)𝑅(�̅�)](1 − �̅�𝑧)𝐴(𝑧) − 𝜃𝑧2[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�]}𝑆(𝛽(𝑧)) 

−𝑧(1 − 𝑧)𝛽(𝑧)[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�]}, 

 

 

𝐴(𝑧) = �̅�[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�] + 𝑝𝑉((�̅� + 𝑎𝑧)�̅�)[1 − (�̅� + 𝑎𝑧)(̅𝜈)],  

 

 𝜋0,0 =
−𝛾′(1)

𝜃𝜈𝑅(�̅�)𝑉(�̅�)𝑆(�̅�+𝑎�̅�)
 

 

and  𝛾′(1) = {𝜈(�̅� + 𝑎�̅�)𝑉(�̅�) − [�̅�𝜃𝜈𝑅(�̅�)𝑉(�̅�) − 𝑎𝑝𝜃�̅� + 𝑎𝑝𝜃�̅�𝑉(�̅�) + 𝜈𝑉(�̅�)]𝑆(�̅� + 𝑎�̅�)}. 

 

 

Corollary 1 The marginal generating function of the number of customers in the orbit 

when the server is idle is given by 

 

𝜋0,0 + 𝜙0(1, 𝑧) =

𝑅(�̅�){{(1−�̅�𝑧)𝐴(𝑧)(�̅�+𝑎𝑧)−𝜃𝑧2[𝜈𝑉((�̅�+𝑎𝑧)�̅�)+𝑎(1−𝑧)�̅�]}𝑆(𝛽(𝑧))

−𝑧(1−𝑧)𝛽(𝑧)[𝜈𝑉((�̅�+𝑎𝑧)�̅�)+𝑎(1−𝑧)�̅�]}

𝛾(𝑧)
𝜋0,0. (23) 
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Corollary 2 The marginal generating function of the number of customers in the orbit 

when the server is busy is given by 

 

 𝜙1(1, 𝑧) =
[1−𝑆(𝛽(𝑧))](1−𝑧)𝛽(𝑧)𝑅(�̅�)[𝜈𝑉((�̅�+𝑎𝑧)�̅�)+𝑎(1−𝑧)�̅�]

𝛾(𝑧)
𝜋0,0. (24) 

 

 

Corollary 3 The marginal generating function of the number of customers in the orbit 

when the server is on vacation is given by 

 

 𝜙2(1, 𝑧) =
𝑎𝑝�̅�(1−𝑧)(�̅�+𝑎𝑧)(1−�̅�𝑧)[1−𝑉((�̅�+𝑎𝑧)�̅�)]𝑅(�̅�)𝑆(𝛽(𝑧))

𝛾(𝑧)
𝜋0,0. (25) 

 

 

Corollary 4 The probability generating function of the orbit size N is given by 

 

𝑁(𝑧) = 𝜋0,0 + 𝜙0(1, 𝑧) + 𝜙1(1, 𝑧) + 𝜙2(1, 𝑧), 
 

 𝑁(𝑧) =

{𝑅(�̅�){𝑆(𝛽(𝑧)){(�̅�+𝑎𝑧)(1−�̅�𝑧)[𝐴(𝑧)+𝑎𝑝�̅�(1−𝑧)[1−𝑉((�̅�+𝑎𝑧)�̅�)]]−[𝜈𝑉((�̅�+𝑎𝑧)�̅�)

+𝑎(1−𝑧)�̅�][𝜃𝑧2+(1−𝑧)𝛽(𝑧)]}+(1−𝑧)2𝛽(𝑧)[𝜈𝑉((�̅�+𝑎𝑧)�̅�)+𝑎(1−𝑧)�̅�]}}

𝛾(𝑧)
𝜋0,0. (26) 

 

 

Corollary 5 The probability generating function of the system size 𝐿𝑠 is given by 

 

𝐿(𝑧) = 𝜋0,0 + 𝜙0(1, 𝑧) + 𝑧𝜙1(1, 𝑧) + 𝜙2(1, 𝑧), 
 

 𝐿(𝑧) =

𝑅(�̅�)𝑆(𝛽(𝑧)){(�̅�+𝑎𝑧)(1−�̅�𝑧){𝐴(𝑧)+𝑎𝑝�̅�(1−𝑧)[1−𝑉((�̅�+𝑎𝑧)�̅�)]}

−𝑧[𝜃𝑧+(1−𝑧)𝛽(𝑧)][𝜈𝑉((�̅�+𝑎𝑧)�̅�)+𝑎(1−𝑧)�̅�]}

𝛾(𝑧)
𝜋0,0. (27) 

 

PERFORMANCE MEASURES 
System performance measurement depends on the predefined system goals and the measures for 

it’s evaluation. Hence, analysis of queueing systems is crucial for optimal management of a system 

and desigining of cost effective congestion control for the same. Some performance measures of 

the system obtained at the stationary state are summarised below.   

 

 • The probability that the system is free is given by 

 

𝜋0,0 =
𝑆(�̅�+𝑎�̅�){𝑉(�̅�)[𝑎𝑝𝜃�̅�+𝜈+�̅�𝜃𝜈𝑅(�̅�)]−𝑎𝑝𝜃�̅�}−(�̅�+𝑎�̅�)𝜈𝑉(�̅�)

𝜃𝜈𝑅(�̅�)𝑉(�̅�)𝑆(�̅�+𝑎�̅�)
. 

 

 

    • The probability that the system is occupied is given by 

 

𝜙0(1,1) + 𝜙1(1,1) + 𝜙2(1,1) =
{(�̅�+𝑎�̅�)𝜈𝑉(�̅�)−{𝑉(�̅�)[𝜈+𝑎𝑝𝜃�̅�−𝑎𝜃𝜈𝑅(�̅�)]−𝑎𝑝𝜃�̅�}𝑆(�̅�+𝑎�̅�)}

𝜃𝜈𝑅(�̅�)𝑉(�̅�)𝑆(�̅�+𝑎�̅�)
.  
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 • The server is idle with probability 

 

𝜋0,0 + 𝜙0(1,1) =
𝑅(𝑎){𝑆(�̅�+𝑎�̅�){[�̅�𝜃𝜈+𝑎𝑝𝜃�̅�+𝜈]𝑉(�̅�)−𝑎𝑝𝜃�̅�}−(�̅�+𝑎�̅�)𝜈𝑉(�̅�)}

𝜃𝜈𝑅(�̅�)𝑉(�̅�)𝑆(�̅�+𝑎�̅�)
. 

 

    • The server is busy with probability 

𝜙1(1,1) =
(�̅�+𝑎�̅�)𝜈𝑅(�̅�)𝑉(�̅�)[1−𝑆(�̅�+𝑎�̅�)]

𝜃𝜈𝑅(�̅�)𝑉(�̅�)𝑆(�̅�+𝑎�̅�)
. 

 

    • The server is on vacation with probability 

 

𝜙2(1,1) =
𝑎𝑝�̅�𝜃𝑅(�̅�)𝑆(�̅�+𝑎�̅�)[1−𝑉(�̅�)]

𝜃𝜈𝑅(�̅�)𝑉(�̅�)𝑆(�̅�+𝑎�̅�)
. 

 

    • The mean system size𝐿𝑠 is derived by differentiating (27) with respect to 𝑧 and 

substituting 𝑧 = 1 as 

𝐿𝑠 = 𝐿′(1) 

 

 =
1

2
{

𝜔′′(1)

𝜔′(1)
−

𝛾′′(1)

𝛾′(1)
} 

 

where,

𝜔(𝑧) = 𝑅(�̅�)𝑆(𝛽(𝑧)){(�̅� + 𝑎𝑧)(1 − �̅�𝑧){𝐴(𝑧) + 𝑎𝑝�̅�(1 − 𝑧)[1 − 𝑉((�̅� + 𝑎𝑧)�̅�)]}

−𝑧[𝜃𝑧 + (1 − 𝑧)𝛽(𝑧)][𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�]}
 

 

and 

 

𝛾(𝑧) = {{[𝑧 + �̅�(1 − 𝑧)𝑅(�̅�)](1 − �̅�𝑧)𝐴(𝑧) − 𝜃𝑧2[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�]}𝑆(𝛽(𝑧))
− 𝑧(1 − 𝑧)𝛽(𝑧)[𝜈𝑉((�̅� + 𝑎𝑧)�̅�) + 𝑎(1 − 𝑧)�̅�]}. 

 

STOCHASTIC DECOMPOSITION 
 The property deals with decomposing the system size into two random variables, where 

the first one corresponds to the system size of the standard queue without vacations and the second 

is the size of the system corresponding to the additional customers due to the vacation of the 

server. 

 

We note that the probability generating function corresponding to the system size can be 

exhibited as, 

 

 

 𝐿(𝑧) = [𝐿(𝑧)]𝑟0=1 ×
𝜋0,0+𝜙0(1,𝑧)

𝜋0,0+𝜙0(1,1)
. (28) 

 

The decomposition property for the proposed model under study is presented in the 

following theorem. 
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Theorem 2 The system size 𝐸(𝐿) is decomposed as the addition of two independent 

random variables 𝐿1 and 𝐿2, i.e., 𝐸(𝐿) = 𝐿1 + 𝐿2 where 𝐿1 is the system size in the 𝐺𝑒𝑜/𝐺/1 

system without vacation and 𝐿2 is the additional size of the system developed as the server is on 

vacation. 

 

NUMERICAL RESULTS 
In this section the numerical validation of the analytical derivations are presented. The impact of 

some system parameters like arrival and displacement are on the probability of the system being 

empty, 𝜋0,0 and the average system size, 𝐸(𝐿) are exhibited. Parameter values satisfying the 

stability condition are chosen for study. It is assumed that the retrial time, service time and 

vacation times follow geometric distribution with PGFs 𝑅(𝑥) =
�̅�𝑥

1−𝑟𝑥
,  𝑆(𝑥) =

�̅�𝑥

1−𝜇𝑥
  and  

𝑉(𝑥) =
�̅�𝑥

1−𝜈𝑥
 where 𝑟 = 0.3,    𝜇 = 0.4  and  𝜈 = 0.4 respectively. 
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In Figures (a) and (b) 𝜋0,0  and 𝐸(𝐿)  against the arrival probability 𝑎  for different 

displacement probabilities are plotted. The curve of 𝜋0,0 is seen to steadily decrease while on the 

contrary 𝐸(𝐿) increases for increasing values of 𝑎, which supports our intuition. In Figures (c) 

and (d) 𝜋0,0  and 𝐸(𝐿)  are drawn against the arrival probability 𝑎  for different vacation 

probabilities and the trend of both the curves are as expected and the curve for 𝜋0,0 is observed to 

be high for lower values of vacation probability p. The reverse trend is noted in the graph for 

𝐸(𝐿), for increasing values of p, the values of 𝐸(𝐿) are found to be higher as anticipated. 

 

In Figures (e) and (f) the system empty probability 𝜋0,0 and the expected number of 

customers 𝐸(𝐿) are marked against the displacement probability 𝜃, for various values of arrival 

probability 𝑎. The curve of 𝜋0,0 increases for increasing values of the displacement probability 

while that of the curve for 𝐸(𝐿) gradually decreases for increasing values of the 𝜃. The Figures 

(g) and (h) are drawn for 𝜋0,0 and 𝐸(𝐿) across the displacement probability for various values of 

vacation probabilities 𝑝. As anticipated, the curve of 𝜋0,0 is observed to have a steady increase 

for increasing values of the displacement probability 𝜃. On the contrary, the graph for 𝐸(𝐿) 

decreases for increasing values of 𝜃. The graph of 𝜋0,0 is found to be higher for lower values of 

𝑝. 

 

CONCLUSION 
In this paper, a discrete time retrial queueing system with displacement and change of vacation 

times is analysed. Introduction of change of vacation times in a retrial queue enables the customer 

to retry for service if the server is found to be busy and also the server is given an opportunity to 

change the number of slots for vacation based on the current requirement. The probability 

generating function technique has been applied and the generating functions of the Markov chain 

in the steady state are obtained. Important generating functions have been derived. Some 

performance measures of the system are obtained. Numerical results are presented to illustrate the 

effect of some system parameters on the performance of the system. 
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