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Abstract 

Medical image fusion technology is important for clinical use because it contains information from different types of 

images. Image fusion based on multiple types of medical images makes the quality of the merged images much 

better. Alzheimer's disease (AD) is a fatal brain disorder that has a devastating impact on memory and thinking. The 

prevention and treatment of AD are greatly aided by early diagnosis. By analyzing the functional and anatomical 

changes in the brain, and Alzheimer's disease diagnosis may be made using computers. Experts in the medical field 

still struggle to diagnose illnesses using a single modality due to a lack of data in this area. Different medical 

imaging systems may be fused using image fusion to provide a comprehensive image of a patient's health status, 

including the location and severity of any visible disorders. In this paper, we suggest a good way to combine the 

information from Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans the image for the 

diagnosis of Alzheimer's disease. As a result, a medical image fusion strategy for multimodal MRI and CT images is 

provided in this study. For the fusion process, we proposed the Waveatom Transform approach. The suggested 

approach's performance is proven by fusing several sets of multimodal images and evaluating the suggested 

method's outcomes to the findings of certain other image fusion techniques. The performance metrics are compared 

with wavelet with CT image, wavelet with MRI image; wavelet with CT+MRI image, waveatom with CT image, 

waveatom with MRI image, and waveatom with CT+MRI image was analyzed. It has been discovered that the 

optimized strategy outperforms traditional fusion approaches in terms of performance. 

Keywords: Image fusion, Alzheimer's disease (AD), Waveatom Transform, Computed 

Tomography (CT), Magnetic Resonance Imaging (MRI)  
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INTRODUCTION 

The rapid advancement of computer technology has made medical imaging technology a crucial 

component of many therapeutic applications. Medical images with distinct modules display 

organ/tissue information from different imaging methods [1]. Clinicians use imaging techniques 

based on the situation. Multi-modal medical image fusion aims to fuse the source images with 

other modes that each carries a distinct kind of supplemental information to create a visual 

composite image that will aid clinicians in their diagnosis and decision-making. A 

neurodegenerative ailment called AD causes dementia and cognitive loss. By the year 2025, 

there will be 10 million AD sufferers living in the United States [2]. Automated computer-aided 

diagnostic techniques might thus significantly increase the efficiency of screening at-risk people. 

These procedures often use patient data as input, including, but not limited to, demographics, 

medical history, genetic sequencing, and images of the nervous system. The output is a 

diagnostic label that indicates the patient's health state and may also contain a probabilistic 

uncertainty about the prognosis. The lack of clarity around a clinical diagnosis of AD has 

sparked a hunt for imaging diagnostic indicators [3]. Numerous CT investigations have been 

conducted since the 1970s to look for signs of localized atrophy in AD patients' brains. Because 

AD patients were only diagnosed clinically, the overlap between AD and normal aging impeded 

the search. Atrophy affects both the ventricular and cortical systems. Normal axial CT scan angle 

obscures the medial temporal lobe [4]. Temporal horn dilation and suprasellar cistern 

enlargement imply medial temporal lobe alterations. They concluded that hippocampus atrophy 

is an early marker of deteriorating AD. Hippocampal atrophy is a typical AD neuroimaging 

finding. The axial temporal lobe-directed CT scan may examine for numerous infarcts, tumors, 

or hydrocephalus, and the temporal lobe-oriented scan (in 1.5-2 mm slices) can identify medial 

temporal lobe atrophy are indicated in figure 1. 
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Figure 1:  Left and right brain CT scan of an AD patient 

A CT with AD is on the left, and a catheter is seen in sufferers with normotensive hydrocephalus 

(right). CT helps separate Alzheimer's disease from other brain illnesses. Unfortunately, the 

value of CT in the diagnosis of AD is relatively low. The availability of MRI has increased over 

the last 20 years, and it has subsequently been employed for the great majority of structural 

neuroimaging procedures [5, 21].  Alzheimer's disease is the most frequent cause of dementia. 

Neurofibrillary tangles (NFT) and beta-amyloid neuritic plaques are AD markers. AD brains had 

hyperphosphorylated tau. In this condition, normal tau's major functions are disturbed and paired 

helical filaments or NFTs polymerize, which causes synaptic loss. Overproduction of amyloid 

precursor protein causes high A42 levels and neuritic plaque development.  

ISSN: 0369-8963

Page 35

PERIODICO di MINERALOGIA                                                                                                           Volume 91, No. 5, 2022

                                                                                                                                         https://doi.org/10.37896/pd91.5/9153



 

Figure 2: MRI scan image for normal and AD  

This causes neuronal damage by oxidative and inflammatory stress. Atrophy initially appears in 

the entorhinal cortex (ERC) and hippocampus of the medial temporal lobe (MTL) [6]. AD 

patients have 26–27% smaller hippocampus and ERC sizes than controls. MCI causes moderate 

MTL atrophy [7]. AD patients with widespread hippocampus atrophy have an executive function 

and memory problems [8]. AD patients exhibit the highest losses in hippocampus volume 

compared to DLB and PDD. Feature space, transformational field, and deep learning are used in 

medical image fusion. The rapid rise indicates the need for computer-assisted clinical 

diagnostics. Different research advocated different fusion processes, each with its own set of 

benefits. 30 implementations exist for medical image fusion. Quantitative assessment markers 

for fusion effects vary. Indicator nonuniformity restricts request options. Medical image fusion 

research, although adequate, lacks novelty. The bulk of fusion techniques have been upgraded 

based on the initial methodologies; however, problems like chromatic warping and pattern 

information retrieval remain. Insufficient training data may lead to overfitting. Learning a 

complicated network takes time and needs several settings. Simplify the training system or 

enable simultaneous retraining. To address such problems, we proposed the Waveatom 

Transform approach. The suggested approach's performance is proven by fusing several sets of 

multimodal images and evaluating the suggested method's outcomes to the findings of certain 

other image fusion techniques.  
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Contributions of this research 

❖ To use the median filter to minimize the influence of input noise values with 

exceptionally large magnitudes is one of the most significant advantages of the median 

filter in comparison to other filters. 

❖ To assess the Kernel Principle Component Analysis (KPCA) identifies data patterns 

based on feature correlation. KPCA projects high-dimensional data into a new subspace 

with the same or less dimensions. 

❖ One way offered to achieve this goal is the waveatom-based multifocus image fusion 

method. 

The remainder part of this research is structured as Section 2- related work; Section 3- proposed 

work; Section 4- result and discussion; Section 5- conclusion. 

RELATED WORKS 

Here, we provide a summary of previous studies that are relevant to our strategy and application. 

Table 1 indicates the related works of this research. 

Table 1: Related works of this research 

Ref. 

no. 

Author/ 

year 

Description Limitation 

[9] Li et al. 

(2020) 

To generate supplementary, redundant, and low-

frequency sub-band pictures, they use a Laplacian 

decision graph decomposition strategy with image 

augmentation. Considering the varied properties of 

redundant and complementary information, they 

present the overlapping domain (OD) and non-OD 

(NOD), where the OD fuses redundant information 

and the NOD fuses complimentary information 

The lack of clarity 

around a clinical 

diagnosis of the 

medical image has 

sparked a hunt for 

imaging diagnostic 

indicators 

[10] Maqsood 

and Javed 

et al. 

Introduces a multimodal image fusion approach that 

utilizes sparse representation and two-scale image 

decomposition. The suggested method initially 

The disadvantage is 

that the learned 

dictionary cannot 
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(2020) applies a contrast enhancement approach to the 

source multimodal images, balancing out the 

intensity distribution for enhanced display. 

adequately reflect the 

complicated input 

image structure. 

[11] Zhao et al. 

(2021) 

For the practical requirements of medical diagnosis, 

a multi-mode medical image fusion with deep 

learning will be suggested.  

Applied in batch 

mode for multi-modal 

medical image fusion, 

circumventing one-

page processing 

constraint. 

[12] Zhu et al. 

(2019) 

The unique strategy for fusing several medical 

imaging modalities based on phase congruency and 

local Laplacian energy.  

Implemented in 

various multi-modal 

medical image fusion 

issues in batch 

processing mode, and 

may successfully 

overcome the 

constraint of just one-

page processing. 

[13] Ganasala 

and Prasad 

et al. 

(2020) 

New image fusion approach based on stationary 

wavelet transform (SWT) and texture energy 

measurements (TEMs) to solve fusion products' 

weak contrast and excessive processing cost. SWT 

pulls approximations and details from source 

images 

A search for imaging 

diagnostic markers 

has been motivated by 

the lack of clarity 

around the clinical 

diagnosis of medical 

images. 

[14] Tao et al. 

(2018) 

Using low-rank sparse component decomposition 

and dictionary learning, this research proposes a 

novel method for the fusion, denoising, and 

augmentation of medical images. 

When images are 

corrupted by noise, 

the efficacy of fusion 

techniques diminishes 

drastically. 
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[15] Xia et al. 

(2019) 

Develop a novel multi-modal picture fusion method 

that employs multi-scale transformation and deep 

convolutional neural network features to improve 

medical diagnostic accuracy. In the first layer of the 

network, the Gauss-Laplace and Gaussian filters 

break the original images into numerous sub-images 

The basis of this 

challenge is that it is 

difficult to adopt a 

fixed model to the 

fusion needs of a new 

fusion image, which 

makes acquiring 

previous knowledge 

challenging. 

[16] Dinh et al. 

(2021) 

This study proposes two new methods to address the 

two issues. With the first method, low-frequency 

components are fused using the Equilibrium 

optimizer algorithm (EOA). The second approach 

uses the Prewitt compass operator to sum local 

energy functions to fuse high-frequency 

components. 

A negative aspect of 

the merged image is 

the loss of fine detail. 

[17] Wang et al. 

(2018) 

A new adaptive decomposition strategy is suggested 

to discriminate between high-frequency and low-

frequency picture components to extract the 

smoothing layer and texture layer from the 

structural image. 

Lack of clarity in 

clinical image 

diagnosis prompted 

the hunt for imaging 

diagnostic indicators. 

[18] Rajalingam 

et al. 

(2018) 

To enhance the quality of fused multimodality 

medical images, this study developed a unique 

neuro-fuzzy hybrid approach. 

The combined image 

lacks detail. 

[19] Peng et al. 

(2018) 

This study presents a novel approach to image 

fusion by examining the usage of CNP systems to 

coordinate the merging of different types of medical 

images. 

The choice of the 

high-frequency 

coefficients 

determines the low-

frequency coefficient. 
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[20]  Analyze feature fusion's advantages and 

functionality. The fusion of two photos or numerous 

characteristics improves infection detection and 

categorization. Here, they explore medical 

researchers' methodologies. 

Lack of clarity 

surrounding clinical 

image diagnosis has 

driven a quest for 

imaging diagnostic 

markers. 

 

PROPOSED METHODOLOGY 

Different medical imaging systems may be fused using image fusion to provide a comprehensive 

image of a patient's health status, including the location and severity of any visible disorders. In 

this study, we propose a useful method for combining the data from CT and MRI scan images for 

Alzheimer's disease diagnosis. As a consequence, this work offers a medical image fusion 

technique for multimodal MRI and CT images.  Figure 3 indicates the proposed methodology of 

this research.  

 

Figure 3: Proposed methodology of this research 
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A. Dataset 

a. Input CT image (A) 

This dataset on Alzheimer's disease was obtained from the Kaggle dataset. The URL for the 

dataset may be found here. “https://www.kaggle.com/code/jeongwoopark/alzheimer-

detection-and-classification-98-7-acc/data“ 

b. Input MRI Image (B) 

This dataset on Alzheimer's disease was obtained from the Kaggle dataset. The URL for the 

dataset may be found here. https://www.kaggle.com/code/davidebombassei/alzheimer-mri-

model-group-7/data.  

Figure 4 indicates the sample image for CT and MRI image, figure 4(a) indicates the CT image; 

figure (b) depicts the MRI image. 

 

Figure 4: (a) CT image and (b) MRI image 

B. Image preprocessing using Median Filter 

To gain a competitive edge in the prior processes, image quality must always be enhanced. The 

image pre-processing plays a significant role in presenting the image's improved qualities. An 

effective adaptive median filter technique is utilized in this suggested system to improve the 

clarity of MRI and CT images on AD patients. This is a fairly effective method of removing 

impulse data from images. In the traditional median filter method, on the other hand, all of the 
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image's pixels are filtered equally, including both noisy and noiseless pixels. As a result, the pre-

processed image will have faded corners, removed edges, and a blurred image. As a result, 

numerous varieties have been introduced. The factors aren't used explicitly by nonlinear filters. 

Their operation is based on the values of pixels in the area that is being considered. To remove 

grain noise from an image, apply an averaging filter. The median filter, on the other hand, can be 

used to reduce noise without distorting the image's crisp edges. It replaces a pixel with the 

median of all pixels in the surrounding area. Median filters are the most effective at reducing 

noise patterns with high spike-like components.  

C. Feature Extraction using Kernel Principle Component Analysis (KPCA) 

The KPCA algorithm is an extension of the principal components analysis (PCA) method that 

does not operate linearly. PCA works well with linear data and has limitations when trying to 

analyze nonlinear data. Images of people's brains must have some kind of nonlinear connection. 

Due to its ability to mine the nonlinear information in the dataset, KPCA provides additional 

benefits for identifying the major components and minimizing the dimension. The selection of 

the nonlinear mapping function ϕ is the decisive step in the KPCA analysis procedure. High-

dimensional linear features (ϕ) are constructed from the input vector (Z). The PCA method is 

then used to analyze the data in the given space. 

a. Nonlinear mapping function determination ϕ 

It's common to practice using training samples in z= z1, z2,…zq. A high-dimensional space, 

denoted by ϕ, is created from the training sample z. For the feature space to qualify, it must 

satisfy the following conditions: 

∑ ϕ(za) = 0, (i = 1,2 … q)q
a=1                                                                                                     (1) 

b. Estimating the covariance matrix𝑻̂. 

A description of the covariance matrix is given by 

t̅ =
1

Q
ϕ(za)ϕ(za)C                                         (2) 

The high-dimensional spatial mapping makes it very challenging to solve analytically. Therefore, 

the covariance is often solved using the kernel function. Radial basis kernel functions are 
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examples of common kernel functions  𝑆(𝑧𝑎, 𝑧𝑑) = (𝑔. 𝑘(𝑧𝑎, 𝑧𝑑) + t). j , polynomial kernel 

function 𝑆(𝑧𝑎, 𝑧𝑑) = (𝑔. 𝑘(𝑧𝑎, 𝑧𝑑) + t)j  and sigmoid kernel function 𝑆(𝑧𝑎, 𝑧𝑑) = 𝑡𝑎𝑛 ∙

𝑙(𝑚. 𝑘𝑘(𝑧𝑎, 𝑧𝑑) + o)  etc. To define q*q matrix s  Syp = (ϕ(zy). ϕ (zp)) (y, p = 1,2 … … . q) can 

be calculated.  

c. Localization of the Kernel Function Matrix. 

Confirming that the centralized kernel function matrix Nq =N=Aqs -SAq+ Aqs SAq, Aq is a q*q 

matrix is necessary before can be determined. Further, each component is 1/q. 

d. Evaluating eigenvalues and eigenvectors 

The matrix Nq eigenvalues λ= (λ1, λ2, λx) and eigenvectors ά= ά1, ά2, άx may be determined. 

Later, a fresh feature vector is derived using Schmidt's orthogonalization and unitization. The 

major component eigenvector β= (β 1, β 2, βv… βx) after features reduction computation is then 

found to be by computing the cumulative contribution rate. The KPCA technique is used to 

reduce data representation while preserving the most important features of a sample. 

Simultaneously, the dimension of the feature matrix is reduced by selecting the relevant 

eigenvectors based on the cumulative contribution rate, which in turn increases classification 

accuracy. KPCA offers two improvements over conventional PCA: 

❖ First, we present a function for projecting data from their original low-dimensional space 

into a high-dimensional space. 

❖ A theorem is stated which states that all space samples may be used to linearly represent 

any vector in space, including a basis vector. 

D. Waveatom Transform  

The waveatom transform was a newer mathematical transformation utilized in contemporary 

computational harmonic analysis. This transformation may adapt to different local orientations in 

a pattern, and it can also sparsely depict anisotropic patterns that are perpendicular to the axes. 

The mathematical definition of the parabolic scaling rule for the relationship between the 

duration of vibrations (i.e., frequency) of every wave atom and the size of vital support (i.e., 

circumference) is,  

Wavelength ά diameter2 
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Consider the following definition of the Fourier transform of a two-dimensional (2D) function, 

n ̂(ω), where k = (k1, k2): 

𝑛̂(𝜔) = ∫ 𝑛(𝑘)𝑒−𝑗𝜔𝑘𝑚𝑘;  𝑛(𝑘) =
1

(2𝜋)2 ∫ 𝑛̂ (𝜔)𝑒𝑗𝜔𝑘𝑚𝜔                                                                                 (3)                                        

Let's define waveatoms as (k) with the subscript (q, h, r), where q denotes the resolution scale, h 

denotes the position in time ([h1, h2], and r denotes the place in frequency ([r1, r2]). These five 

variables, which all have positive integer values and index the point (kμ, 𝜔μ) in phase space, are 

q, h1, h2, r1, and r2, respectively. 

𝑘𝜇 = 2−𝑞ℎ 𝑎𝑛𝑑 𝜔𝜇 = 𝜋2𝑞𝑟                                     (4)                                        

With c1, c2 > 0 and 2q a1 max |r1, r2| 2
q a2. The wave vector designates the centers of bumps of 

𝜑̂𝑛
0(𝜔) as, and the position vector, k, represents the center of (k).  

φ̂
s
0(ω) = e−jω/2[ejurg(br(ω − 2ur)) + e−jurg(br+1(ω − 2ur))]                          (5) 

 

 

Figure 5: The frequency plane's wave atom tiling 

The frequency plane's waveatom tiling is seen in figure 5. Fourier transforms of real-valued 

functions have a central symmetry around the origin, and may be understood if either r2 > 0 or r2 
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= 0 and r1 > 0. When H is more than zero, the constituent parts of a wave packet frame are 

known as waveatoms. 

𝜑̂𝑛
0(𝜔) = 𝑒−

𝑗𝜔

2 [𝑒𝑗𝑢𝑟𝑔(𝑎𝑟(𝜔 − 2𝑢𝑟)) + 𝑒−𝑗𝑢𝑟𝑔(𝑎𝑟+1(𝜔 + 2𝑢𝑟))                                                                  (6) 

The localization criteria have the following encoding for the parabolic scaling. The necessary 

frequency support at scale ~2-2k is of size ~2-k for each bump of 𝜑̂𝑛
0(𝜔), whereas the essential 

spatial support is of size ~2-k. Wavelength ~2-2k characterizes the oscillations that take place 

within a waveatom's envelope in k. 

a. Implementations 1D waveatoms 

Tensor product of well selected 1D wave packets yields waveatoms. However, the inherent 

limitation of conventional wave packets is their inability to precisely localize frequencies. Using 

the equations ur= (-1)r and cr= 
𝜋

2
 (r + 1 2) Selecting g as a real-valued bump function on interval 

2, 

∑ |𝜑̂𝑟
𝑜(𝜔)|2 = 1𝑟                                                                                                (7)      

Villemoes's design is notable because it allows for the creation of waveatoms with strong 

frequency localization through dyadic dilations and translations of 𝜑̂𝑟
𝑜 on the frequency axis, i.e. 

𝜑ℎ,𝑟
𝑞 (𝑘) = 𝜑𝑟

𝑞(𝑘 − 2−𝑞ℎ) = 2𝑞 2⁄ 𝜑𝑟
𝑜(2𝑞𝑘 − ℎ)                                           (8) 

So, a function f is transformed into a series of waveatom coefficients by the waveatom 

transform: 

𝑐ℎ,𝑜
𝑘 = ∑ 𝑒𝑗2−𝑞ℎ𝑜

∑ 𝜑𝑟
𝑞(𝑜 + 2𝑞𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑝∈2𝜋ℤ 𝑓(𝑜 + 2𝑞𝑝)𝑜=2𝜋𝑗                                                                           (9) 

Waveatoms are seen here in their positive and negative forms: 

𝜑̂ℎ,𝑟
𝑞 (𝜔) = 𝜑̂ℎ,𝑟+

𝑞 (𝜔) + 𝜑̂ℎ,𝑟,−
𝑞

(𝜔)                                                                                            (10) 

Inverse Hilbert Function The solution to equation 6 is the orthonormal basis L2(S), denoted by 

𝐻𝜑̂ℎ,𝑟
𝑞 (𝜔), which is produced via positive and negative bumps weighted linearly. 

𝐻𝜑̂ℎ,𝑟
𝑞 (𝜔) = −𝑗𝜑̂ℎ,𝑟

𝑞
+ 𝑗𝜑̂ℎ,𝑟−

𝑞
(𝜔)  
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b. Extension to 2D waveatoms 

In terms of their 1D counterpart, 2D waveatoms may be defined in precisely three ways: 

i. Orthonormal basis 

Individually obtaining tensor products of 1D waveatoms yields 2D orthonormal basis functions, 

i.e. 

𝜑𝜇
+(𝑘1, 𝑘2) = 𝜑𝑟1

𝑞 (𝑘1 − 2−𝑞ℎ1)𝜑𝑟2

𝑞
(𝑘2 − 2−𝑞ℎ2)                                                                                   (11) 

Fourier transform expression: 

𝜑̂𝜇
+(𝜔1,𝜔2) = 𝜑̂𝑟1

𝑞 (𝜔1)𝑒−𝑗2𝑞ℎ1𝑘1 𝜑̂𝑟2

𝑞
(𝜔2)𝑒−𝑗2𝑞ℎ2,𝑘2

                                                                                         (12) 

The Hilbert transform may be used to define a pair of orthonormal basis functions: 

𝜑̂𝜇
−(𝑘1, 𝑘2) = 𝐻𝜑𝑟1

𝑞 (𝑘1 − 2−𝑞ℎ1)𝐻𝜑𝑟2

𝑞
(𝑘2 − 2−𝑞ℎ2)                                                                                      (13) 

The frequency domain displays four lobes due to the oscillations occurring in two mutually 

perpendicular orientations. 

ii. Directional waveatoms 

Orthonormal basis functions have the fundamental drawback of oscillating in two directions 

rather than just one, namely the k-direction. To address this issue, we may combine the 

fundamental (equation 11) with the dual (the Hilbert transformed basis) (Equation 13).  

𝜑𝜇
(1)

=
𝜑𝜇

++𝜑𝜇
−

2
 𝑎𝑛𝑑𝜑𝜇

2 =
𝜑𝜇

+−𝜑𝜇𝜇
−

2
                                                                            (14) 

Builds a compact framework and supplies basis functions that are bi-lobed concerning the origin 

in the frequency domain, producing directional waveatoms. The redundancy of such a waveatom 

is increased by a factor of two to accommodate its unidirectional oscillation. 

iii. The complex waveatoms 

This frequency domain symmetry breaking leads to subspaces of fixed k and n being exactly 

shifted invariant but at the cost of a factor of four more redundancy. However, neither 

orthonormal waveatoms nor directional waveatoms have the crucial characteristic of shift-
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invariance. Since there is no overlap during the "wrapping" operation, aliasing is often 

eliminated when shift invariance is used. Because of its shift-invariant nature, complex 

waveatom is favored in the article above other 2D waveatoms for achieving fusion of images. 

E. Fusion   

Image enhancement is the use and interpretation of three-dimensional files of the body, typically 

collected from a Computed Tomography or Magnetic Resonance Imaging scanner, to detect 

disorders, direct medical treatments such as surgery preparations, or for investigation activities. 

The technique of merging numerous images within the same or other senses in terms of 

improving input images and conserving data is known as multi-modal medical image fusion. To 

conduct more thorough clinical investigations and make more accurate diagnoses of diseases, 

doctors often use the usage of medical image fusion. More specifically, complex waveatom, a 

version of the waveatom transform, exhibits a crucial characteristic that affects the efficacy of 

image fusion techniques, leading to the suggestion of waveatom transform-based medical image 

fusion. 

F. Inverse Waveatom Transform 

In inverse waveatom transform, the basic idea is to use the waveatom transform to deconstruct 

all input images and then fuse the resulting waveatom coefficients. The process of image fusion 

is carried out using higher clarity and crisper image sensitivities, inverse waveatom parameters 

are used. Lastly, the fused image is created using the inverse waveatom transform.  

❖ The waveatom transform is initially used to break down the incoming multimodal 

medical images ά into levels. 

❖ Because a greater intensity corresponds to a higher coefficient, the fused image's 

waveatom coefficients have the greatest values. Mathematically 

𝑊𝑍
𝑅/1

= {

𝑊𝑘
𝑅/1

𝑊𝑌
𝑅/1

0.5(𝑊𝑘
𝑅/1

+ 𝑊𝑌
𝑅/1

)

𝑖𝑓
𝑖𝑓
𝑖𝑓

𝑊𝑘
𝑅/1

> 𝑊𝑌
𝑅/1

𝑊𝑘
𝑅/1

< 𝑊𝑌
𝑅/1

𝑊𝑘
𝑅/1

= 𝑊𝑌
𝑅/1

                           (15) 

Where𝑊𝑘
𝑅/1

, 𝑊𝑌
𝑅/1

, and 𝑊𝑍
𝑅/1

 stand for the real (S)/imaginary (I) wave atom coefficients of 

images A, B, and the resulting image C, respectively. 
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❖ Create the final fused image by performing an inverse waveatom transform at the ά level 

(C). 

RESULT AND DISCUSSION 

The waveatom transform image fusion method's effectiveness is assessed using the following 

parameters: Peak Signal to Noise Ratio (PSNR), standard deviation, spatial frequency, and 

entropy. The performance metrics are compared with wavelet with CT image, wavelet with MRI 

image; wavelet with CT+MRI image, waveatom with CT image, waveatom with MRI image, 

and waveatom with CT+MRI image was analyzed. The existing methods such as Laplacian 

Pyramid-based Pulse Coupled Neural Network (LPPCNN), Hybrid medical image fusion using 

wavelet and curvelet transform (HW-CT), Non-subsampled complex wavelet transform (N-

SCWT), and generative adversarial network (GAN) are compared with the proposed method to 

attain the greatest performance in this research. The performance metrics are compared with 

wavelet with CT image, wavelet with MRI image; wavelet with CT+MRI image, waveatom with 

CT image, waveatom with MRI image, and waveatom with CT+MRI image was analyzed. The 

CT image using wavelet transform are depicted in figure 6. Figure 7 illustrates the MRI image 

using wavelet transform. Figure 8 demonstrates that the original images to be wavelet fused 

image for CT and MRI images in AD.  

 

Figure 6: Wavelet with CT image 
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Figure 7: Wavelet with MRI image 

 

Figure 8: Wavelet with CT+MRI image 

The MRI image is better at depicting soft tissues, whereas the CT image is better at depicting 

bones and hard tissues are illustrated in figure 9 and 10.  According to figure 11, the results 

obtained using the waveatom transform fusing CT and MRI, the quality of the fused image 

improves with increasing levels of breakdown. By comparing the outcomes of the suggested 

fusion approach with those of various current state-of-the-art fusion methods based on, it is 

shown that the former is better. 
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Figure 9: Waveatom with CT image 

 

Figure 10: Waveatom with MRI image 

 

Figure 11: Waveatom with CT+MRI image 

The spatial frequency of a structure is calculated as the number of times its oscillatory 

constituents (as measured by the Fourier transform) repeat per unit of distance. The spatial 

frequency is calculated in phases per pixel by the ratio 2π/N. As shown in figure 12, the spatial 

frequency is higher in our proposed work than in the existing work. SD is made up of both input 

and distortion components, and it is effective in the lack of distortion. It assesses the level of 
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difference in the combined image. An image with a lot of difference will get a lot of SD. Figure 

13 indicates the standard deviation of our proposed work. 

𝜎2 =
1

𝑁−1
∑ (𝑥 − 𝜇)2𝑛

𝑖                                                                                                                                             (16) 

Where µ= number of pixels. 

The quantity of dataset contained in an image is defined as entropy. Figure 14 indicates the 

entropy of the suggested work. Noise and other undesired fast fluctuations affect entropy. If the 

fused image's entropy is higher than the original image, it means the fused image has more 

datasets. The dataset substance of a fused image is calculated using the entropy. 

𝐻𝑒 = − ∑ ℎ𝑙𝑓
(𝑖)𝑙𝑜𝑔2

𝐿
𝑖=0 ℎ𝑙𝑓

(𝑖)                                                                                                                            (17) 

Figure 15 depicts the PSNR of our proposed work. When the fused and source images are 

identical, the PSNR will be below in our suggested approach. It's calculated as follows: 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑉2

𝑅𝑀𝑆𝐸
)                                                                                                                                     (18) 

Where RMSE stands for Root Mean Square Error 

 

Figure 12: Spatial Frequency 
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Figure 13: Standard Deviation 

 

Figure 14: Entropy 

ISSN: 0369-8963

Page 52

PERIODICO di MINERALOGIA                                                                                                           Volume 91, No. 5, 2022

                                                                                                                                         https://doi.org/10.37896/pd91.5/9153



 

Figure 15: PSNR 

Discussion 

LPPCNN using multi-scale processing and adaptive selection are used to solve the artefact issue 

in the fusion results to improve the influence on human visual perception. Edges, textures, and 

other elements may be broken down into layers with various resolutions following various 

scales. Then, to create the fused pyramid, the matching layers of various source photos may be 

fused independently. Reconstruction is employed to create the combined image in the end. 

Medical image fusion has made extensive use of LP, yet this technology has an artefact issue 

(22). To address contrast restrictions and improve details in the fusion results, the HW-CT 

(existing) incorporates an additional enhancement phase employing adaptive and coupled 

adaptive histogram equalization and histogram matching (23). N-SCWT (existing) offers 

multiscale and multiresolution representation together with shift-invariance, phase information, 

and six-directional selectivity, all while reducing the computing cost (24). GAN (existing) are 

just migrations of other kinds of image fusion techniques, and such processes often result in the 

loss of elements that are inherent to the medical image itself (25). Because of the above problem, 

this paper attempts the fusion process by proposing the Waveatom Transform approach. The 
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suggested approach's performance is proven by fusing several sets of multimodal images and 

evaluating the suggested method's outcomes to the findings of certain other image fusion 

techniques.  

CONCLUSION 

This report introduces a medical image fusion procedure for multimodal MRI and CT images for 

AD brain images. We presented a Waveatom Transform based on the fusion process. The 

effectiveness of the suggested technique is demonstrated by fusing multiple types of multimodal 

images and evaluating the outcome to those of other image fusion methods. Spatial frequency, 

standard deviation, entropy, and PSNR can all be determined as a consequence. Finally, when 

compared to the other 4 existing works, the proposed work has high efficiency in terms of spatial 

frequency, standard deviation, and entropy. In the comparison graph, the PSNR of our suggested 

work is low when evaluated by the existing work, implying that the suggested technique is more 

efficient. When the waveatom transform on the dataset, it is discovered that the waveatom 

transform has a significant benefit in terms of de-noising the images, meaning that the recent 

research is capable of producing a high-quality fused image with more informative contents. As 

a result, the proposed work is quite useful and more efficient.  The findings that were obtained 

by fusing CT and MRI using the waveatom transform showed that the quality of the fused image 

became better as the degrees of breakdown got higher. It has been established that the outcomes 

of the recommended fusion strategy are superior to those of a variety of existing state-of-the-art 

fusion approaches based on, and this has been accomplished by comparing the two sets of 

results. 

There is a need for greater study to address the methodological constraints of more sophisticated 

modalities, which give unique insight into disease-specific patterns of neuropathology, even if 

only classic structural modalities are recommended for diagnosis in clinical practise of AD. This, 

we can only hope, will eventually lead to their incorporation into diagnostic criteria for AD. The 

fact that we've already used the planned waveatom transform is another constricting factor in our 

effort. We have also avoided CT scans and image fusion by just using MRI scans. As brain MRI 

pictures are often considered private, hospitals are reluctant to provide them for research 

purposes. We have tested the suggested model on a large dataset. 
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