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Abstract 

Background 

Brain tumours are a diverse and complex category of disorders that can occur in many cell types within the brain. 

Genomic technology has identified important genetic abnormalities and biological mechanisms that cause brain 

tumour subtypes, enabling more accurate diagnosis and focused treatments. Using bioinformatic analysis, this study 

establishes predictive gene targets of expression changes in brain tumours compared to normal samples. 

Methods and results 

Datasets GSE213269 (n=20) and GSE212377 (n= 102) brain tumor were downloaded from GEO and data as a 

healthy control dataset was downloaded from GTEx. The datasets were integrated using ComBat-Seq. The 

differential expression analysis was performed using edgeR evaluating differences between tumor samples and 

healthy samples. The set criteria to identify was of FDR < 0.01 and |logFC| >1. We found that a total of 4789 genes 

were differentially expressed. There were 1925 genes upregulated while 2864 genes were downregulated. The most 

significant upregulated genes were CT47A10, TTTY13, TTTY8, OR1I1, SNORD115-32, KRTAP19-3, SNORD7. The 

most significant downregulated genes were OPALIN, MOBP, SCN2B, MAG, BCAS1.  Besides the GSEA, KEGG 

pathway and several transcription factors were identified related to the brain tumor.  

 

Conclusion  

Finding the risk hub genes and prognostic indicators of brain tumours can be accomplished through the use of an 

effective method that involves the analysis of different datasets in conjunction with information regarding global 

networks. 
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Introduction 

Brain tumors represent a complex and heterogeneous group of diseases that can arise from 

different cell types within the brain. Advancements in genomic technology have enabled an 

unprecedented level of understanding regarding the molecular and genetic drivers of brain 

tumors [3]. These advancements have led to the identification of key genetic alterations and 

molecular pathways underlying various brain tumor subtypes, allowing for more precise 

diagnoses and targeted therapies [4]. These advancements have led to the identification of key 

genetic alterations and molecular pathways underlying various brain tumor subtypes, allowing 

for more precise diagnoses and targeted therapies. For instance, glioblastoma multiforme (GBM), 

the most common and aggressive type of brain tumor, is characterized by mutations in genes 

such as TP53, PTEN, and EGFR [5, 6]. 

In 2018, brain cancer, the primary cause of death in both children and adults, was diagnosed in 

approximately 300,000 new cases and was responsible for 241,000 deaths worldwide [7]. More 

recently, statistics on mortality from brain and other nervous system malignancies in the US 

predicted that there would be 23,890 deaths from these diseases in 2020. (12,590 males and 

10,300 females) [8]. Unchecked cell proliferation in brain cancer is a diverse disease with 

complicated molecular pathways that may be brought on by promoter methylation, dysregulated 

gene expression, genetically altered tumor-suppressor genes, and/or oncogenes [9]. There are 

6166 instances that cover a thorough multi-omics data of genetic changes and deregulated 

expression, according to the most recent data summary in the cancer genomics data portal 

cBioPortal. The literature-based genetic distinctions of various brain cancers are still mostly 

unknown, despite the fact that their genomic profilings have a significant impact on how the 

genetics and transcriptome of brain tumors are shaped. With rare exceptions, the median survival 

time for patients with GBM is typically 14 to 17 months [10, 11]. Gene expression profiling 

analysis is a useful method with broad clinical application for identifying tumor-related genes in 

various types of cancer, from molecular diagnosis to pathological classification, from therapeutic 

evaluation to prognosis prediction, and from drug sensitivity to neoplasm recurrence [12-14]. 

GEO database has been instrumental in providing researchers with access to vast amounts of 

genomic data, enabling them to identify new targets for treatment and improve patient outcomes 
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[15]. With the help of GEO database, researchers are able to analyze large-scale genomic data 

sets from brain tumor patients and compare them with normal counterparts. Similarly, GTEx 

database has also been useful in understanding the normal gene expression patterns of different 

tissues, including the brain. Through the utilization of these genomic databases, researchers have 

been able to identify potential therapeutic targets for brain tumors and develop personalized 

treatment strategies based on a patient's unique genomic profile. 

Materials and methods 

Datasets and pre-processing 

The datasets GSE213269 (n=20) and GSE212377 (n= 102) brain tumor were downloaded from 

GEO [16] and data as a healthy control dataset was downloaded from GTEx [17]. The datasets 

were integrated using ComBat-Seq [18] to adjust as many batch effects as possible to minimize 

the loss of biological information. 

Differential expression analysis 

The differential expression analysis was performed using edgeR [19] and Quasi-likelihood 

function [20] evaluating differences between tumor samples and healthy samples. 

Further the results were filtered out with commonly used filters of FDR < 0.01 and |logFC| > 1. 

Gene set enrichment analysis 

The differential expression results were proceeded to GSEA pre-ranked analysis using the 

MSigDB c2, c5 (GO:BP) [21] and Hallmark datasets (version 2023 Homo sapiens 1). Further we 

filtered the results for FDR<0.25 to identify significant enrichment of pathways. 

Network analysis 

To create the network we used hgnc_symbols [22] of the filtered list from differential expression 

analysis as input to Cytoscape stringApp plugin [23]. The criteria was set to 0.5 confidence level 

to get more confident results. The plugin cytoHubba [24] was used to analyze the network. 

Network analysis in R 

The network from Cytoscape [25] was extracted and the statistics were calculated in R using the 

igraph package. We have filtered the interactions for only experimentally validated interactions 
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using the information provided by stringDB. The network degrees and betweenness of the 

proteins was calculated. 

Results 

Differential expression analysis 

The differential gene expression analysis was performed using edgeR and Quasi-likelihood 

function to find the upregulated and downregulated genes between tumor samples and healthy 

samples. Our set criteria was commonly used filters of FDR < 0.01 and |logFC| > 1. Following 

this criterion, we found that a total of 4789 genes were differentially expressed. The processing 

flow is shown in Figure 1. A volcano map is provided in Figure 2. There were 1925 genes 

upregulated while 2864 genes were downregulated. The most significant upregulated genes were 

CT47A10 with logFC 18, TTTY13 with logFC 17.9. A list of top fifteen up and downregulated 

genes is provided in table 1. Detailed description of all the DEGs is provided in Supplementary 

file S1. 

 

Figure 1. Data collection, preparation, analysis, and validation are shown in the analysis process 

flow diagram. 
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Table 1. Top fifteen up and downregulated genes. 

hgnc_symbol Log_FC Log_CPM FDR Description 

CT47A10 18.00084593 8.807185243 5.8E-72 cancer/testis antigen family 47, member A10 

TTTY13 17.97956489 8.864125207 1.9E-227 testis-specific transcript, Y-linked 13 (non-protein 

coding) 

TTTY8 17.77899869 8.585363392 2.71E-64 testis-specific transcript, Y-linked 8 (non-protein 

coding) 

OR1I1 17.56814424 9.363737389 6E-210 olfactory receptor, family 1, subfamily I, member 1  

SNORD115-32 16.94160926 7.819359868 2.7E-230 small nucleolar RNA, C/D box 115-32  

KRTAP19-3 16.82248184 8.183067898 5.5E-212 keratin associated protein 19-3 

SNORD7 16.74581821 7.552368369 2.86E-71 small nucleolar RNA, C/D box 7 

LINC01056 16.72564816 9.08973423 3.7E-200 long intergenic non-protein coding RNA 1056 

SPZ1 16.69319301 9.497988251 1.5E-187 spermatogenic leucine zipper 1 

MIR758 16.65255878 7.575559808 4E-225 microRNA 758  

TTTY19 16.45482457 7.915329958 3.6E-209 testis-specific transcript, Y-linked 19 (non-protein 

coding) 

SNORD115-44 16.40355825 7.2869194 9.6E-230 small nucleolar RNA, C/D box 115-44  

RNASE9 16.38964971 8.389103204 7E-202 ribonuclease, RNase A family, 9 (non-active) 

KRTAP20-3 16.34341778 7.189697331 1.2E-235 keratin associated protein 20-3  

SNORD115-27 16.29801629 7.249008393 8.5E-198 small nucleolar RNA, C/D box 115-27 

Downregulated genes (Top fifteen) 

hgnc_symbol Log_FC Log_CPM FDR Description 

OPALIN -15.05442357 7.432602225 1.6E-186 oligodendrocytic myelin paranodal and inner loop 

protein 

MOBP -14.3924817 9.35472389 4.4E-135 myelin-associated oligodendrocyte basic protein 

SCN2B -14.16700372 7.710019009 2.5E-230 sodium channel, voltage gated, type II beta subunit 

MAG -13.75002348 7.234847989 5.7E-158 myelin associated glycoprotein 

BCAS1 -13.27902691 9.216749727 1.4E-131 breast carcinoma amplified sequence 1 

ETNPPL -13.05737858 8.086251381 1.7E-164 ethanolamine-phosphate phospho-lyase 

PIK3R2 -13.02908698 7.534851101 2.4E-225 phosphoinositide-3-kinase, regulatory subunit 2 (beta) 
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CNDP1 -12.99330478 6.388890115 2E-174 carnosine dipeptidase 1 (metallopeptidase M20 family) 

TCEAL2 -12.97280231 7.715901772 1.3E-219 transcription elongation factor A (SII)-like 2 

UPK3BL -12.91425361 4.886501467 1E-186 uroplakin 3B-like 

CTNNA2 -11.99784488 8.256141865 7.4E-162 catenin (cadherin-associated protein), alpha 2 

SLC6A12 -11.91290052 6.206503834 8.8E-198 solute carrier family 6 (neurotransmitter transporter), 

member 12 

PART1 -11.54731444 5.729097582 2.6E-176 prostate androgen-regulated transcript 1 (non-protein 

coding) 

PMP2 -11.51125936 8.768261127 1.1E-119 peripheral myelin protein 2 

KCNJ16 -11.26663791 4.261881195 6E-173 potassium channel, inwardly rectifying subfamily J, 

member 16 

 

 

Figure 2. The Volcano graph of the differentially expressed genes between the tumor samples 

and the control sample. The blue dots represent the downregulated genes while the red dots 

represent the upregulated genes. The nonsignificant genes are represented by grey color dots. 
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Gene set enrichment analysis 

GSEA is a powerful tool for analyzing high-throughput gene expression data, such as microarray 

or RNA sequencing data, and is widely used in systems biology and functional genomics 

research. It can help identify biologically relevant gene sets and pathways that are differentially 

regulated between two conditions, providing insights into the underlying molecular mechanisms 

of disease or biological processes. 

The differential expression results were proceeded to GSEA pre-ranked analysis using the 

MSigDB c2, c5 (GO:BP) and Hallmark datasets (version 2023 Homo sapiens 1). Further we 

filtered the results for FDR<0.25 to identify significant enrichment of pathways. The most 

significantly enriched terms of tumor vs normal samples are provided in the table 2.  

Table 2. The most significantly enriched GSEA pathways between tumor and normal tissues.  

Name SIZE ES NES Source 

Reactome_Olfactory_Signaling_Pathway 222 0.9414493 1.3146309 C2 

Gobp_Detection_Of_Chemical_Stimulus 274 0.936134 1.3111466 C5GOBP 

Gobp_Sensory_Perception_Of_Smell 236 0.94072485 1.3109825 C5GOBP 

Gobp_Sensory_Perception_Of_Chemical_Stimulus 288 0.93585694 1.3084416 C5GOBP 

Kegg_Olfactory_Transduction 232 0.94033146 1.3079274 C2 

Gobp_Autonomic_Nervous_System_Development 41 0.9904405 1.2981668 C5GOBP 

Gobp_Detection_Of_Stimulus_Involved_In_Sensory_Perception 307 0.9288295 1.2860136 C5GOBP 

Gobp_Detection_Of_Stimulus 421 0.91836226 1.2769622 C5GOBP 

Reactome_Drug_Adme 88 0.92703927 1.2759207 C2 

Hofmann_Cell_Lymphoma_Up 46 0.9636233 1.2749581 C2 

Reactome_Phase_Ii_Conjugation_Of_Compounds 86 0.9337352 1.2737823 C2 

Gobp_Defense_Response_To_Gram_Positive_Bacterium 94 0.9250359 1.2721776 C5GOBP 

Reactome_Sensory_Perception 420 0.906959 1.2676595 C2 

Wp_Neurogenesis_Regulation_In_The_Olfactory_Epithelium 53 0.94201386 1.266694 C2 

Seitz_Neoplastic_Transformation_By_8p_Deletion_Up 72 0.92408925 1.2651991 C2 

Reactome_Translation 283 -0.8576527 -2.035354 C2 

Gobp_Sodium_Ion_Transport 233 -0.9037003 -2.0275338 C5GOBP 

Browne_Hcmv_Infection_16hr_Up 210 -0.86743903 -2.019824 C2 
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Gobp_Regulation_Of_Neurotransmitter_Levels 198 -0.89416337 -2.004378 C5GOBP 

Gobp_Developmental_Growth_Involved_In_Morphogenesis 222 -0.8597496 -1.9960461 C5GOBP 

Kaab_Heart_Atrium_Vs_Ventricle_Up 237 -0.89467764 -1.9877949 C2 

Hallmark_Oxidative_Phosphorylation 194 -0.86485475 -1.9875525 HALLMARK 

Hsiao_Housekeeping_Genes 368 -0.84722936 -1.9803252 C2 

Cairo_Hepatoblastoma_Up 198 -0.86507136 -1.9762344 C2 

Coldren_Gefitinib_Resistance_Dn 211 -0.90749794 -1.9717392 C2 

Gobp_Regulation_Of_Chromosome_Organization 236 -0.8260891 -1.9631209 C5GOBP 

Pasqualucci_Lymphoma_By_Gc_Stage_Up 268 -0.85848224 -1.9608805 C2 

Oswald_Hematopoietic_Stem_Cell_In_Collagen_Gel_Dn 256 -0.84913975 -1.9492453 C2 

Miyagawa_Targets_Of_Ewsr1_Ets_Fusions_Dn 215 -0.8470412 -1.9451728 C2 

Horiuchi_Wtap_Targets_Up 291 -0.86113447 -1.9446048 C2 

 

KEGG pathway 

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways are a collection of manually 

curated and annotated biological pathways that represent molecular interactions and reactions 

within cells, organisms, and ecosystems. These pathways provide a comprehensive view of the 

relationships between genes, proteins, and other molecules involved in various biological 

processes such as metabolism, signaling, and disease. KEGG pathways are widely used in 

bioinformatics and systems biology research to help understand the complex biological processes 

that underlie normal physiology and disease. 

The significantly enriched DEGs were assigned to the KEGG pathway analysis. We found that 

Reactome translation was on the top among others. The top fifteen pathways are provided in 

table 3. A detailed description is provided in Supplementary file S2. 

Table 3. Top fifteen enriched KEGG pathways. 

Name SIZE NES source 

Reactome_translation 283 -2.035354 C2 

Gobp_sodium_ion_transport 233 -2.0275338 C5GOBP 

Browne_hcmv_infection_16hr_up 210 -2.019824 C2 
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Gobp_regulation_of_neurotransmitter_levels 198 -2.004378 C5GOBP 

Gobp_developmental_growth 222 -1.9960461 C5GOBP 

Kaab_heart_atrium_vs_ventricle_up 237 -1.9877949 C2 

Hallmark_oxidative_phosphorylation 194 -1.9875525 HALLMARK 

Hsiao_housekeeping_genes 368 -1.9803252 C2 

Cairo_hepatoblastoma_up 198 -1.9762344 C2 

Coldren_gefitinib_resistance_dn 211 -1.9717392 C2 

Gobp_regulation_of_chromosome_organization 236 -1.9631209 C5GOBP 

Pasqualucci_lymphoma_by_gc_stage_up 268 -1.9608805 C2 

Oswald_hematopoietic_stem_cell_in_collagen_gel_dn 256 -1.9492453 C2 

Miyagawa_targets_of_ewsr1_ets_fusions_dn 215 -1.9451728 C2 

Horiuchi_wtap_targets_up 291 -1.9446048 C2 

 

Transcription factor genes 

Transcription factor genes are genes that encode proteins that bind to DNA and control the 

transcription of genes into RNA. They are a class of regulatory genes that play a key role in the 

regulation of gene expression by controlling the rate at which specific genes are transcribed into 

mRNA. 

These proteins, known as transcription factors, recognize specific DNA sequences and bind to 

them, either activating or repressing the transcription of target genes. This binding event can 

occur in the promoter region of a gene, where it can affect the rate of transcription initiation, or 

at enhancer or silencer elements, where it can modulate the activity of the promoter. 

Transcription factor genes themselves are regulated by a variety of signals, including other 

transcription factors, signaling pathways, and environmental stimuli. Dysregulation of 

transcription factor genes can lead to a wide range of diseases, including cancer, developmental 

disorders, and autoimmune diseases. 

In this study we have identified basic transcription factors that play a key role in brain tumors. A 

brief description is provided in table 4. 
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Discussion 

Although modern clinical diagnosis and treatment procedures show encouraging improvements, 

early detection and the associated improvement in the prognosis for individuals with brain 

tumors are difficult to achieve. Brain tumors are a diverse and complex category of disorders that 

can develop from several types of brain cells. Unprecedented insight into the molecular and 

genetic causes of brain cancers has been made possible by advances in genomic technology [3]. 

These developments have enabled the identification of important genetic changes and molecular 

processes underlying different subtypes of brain tumors, enabling more accurate diagnosis and 

tailored treatments [4]. In this study we have used GEO database to retrieve the genomic data 

sets from brain tumor patients and compared them with normal counterparts from the GTEx 

database. We investigated important brain tumor-related genes and signaling pathways that may 

deepen our understanding of potential molecular mechanisms and their advantages for disease 

detection, therapy, and prognosis. The differential expression analysis was performed using 

edgeR. We set the criterion for the differential analysis as FDR < 0.01 and |logFC| > 1. We found 

that a total of 4742 genes were differentially expressed (Figure 2). There were 1890 genes 

upregulated while 2852 genes were downregulated. The most significant upregulated gene was 

Cancer/testis antigen family 47 member A10 (CT47A10) with logFC 18.  A research team 

conducted a study based on underlying ganglioneuroma (GN), ganglioneuroblastoma (GNB), 

and neuroblastoma (NB). Based on exome sequencing, they have found that the missense 

mutation of CT47A10 is involved in GNB. This mutation was predicted to be c.344C>T [26]. 

Another study predicted the involvement of this gene across human tumors [27]. The second 

most significant upregulated gene was Testis-specific transcript Y-linked 13 (TTTY13), with 

logFC 17.9. This gene, which is present in the male-specific region of the Y chromosome, has 

been linked to the prognosis of several malignancies, including gastric cancer and laryngeal 

squamous cell carcinoma [28, 29]. Similarly, this gene was also studied by another group of 

researchers in the LNCaP and PC3 prostate cancer cell lines [30]. Olfactory receptor family 1 

subfamily I member 1 (OR1I1) was identified with logFC 17.5. This is member of a large family 

of G-protein-coupled receptors (GPCR) originating from genes containing only one coding exon. 

Olfactory receptors, which share a 7-transmembrane domain structure with various 

neurotransmitter and hormone receptors, detect and transduce odorant signals via G protein-
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mediated signaling. Similarly; among downregulated genes, Oligodendrocytic myelin paranodal 

and inner loop protein (OPALIN) with logFC -15.05 was the most significant. This is a 

transmembrane sialylglycoprotein and is reported to be located in the central nervous system 

myelin paranodal loop membrane the mice [31]. It’s pathogenic role is predicted in mouse model 

[32]. Besides its role in glioblastoma [33], this gene has role in psychopathologies such as 

suicidality, depression and some others [34]. The second highly significant downregulated gene 

was Myelin-associated oligodendrocyte basic protein (MOBP). A diversified functional gene in 

the CNS [35], it showed roles in Parkinson’s disease [36], dementia [37], schizophrenia [38], and 

several others. Sodium channel, voltage gated, type II beta subunit (SCN2B) showed logFC -

14.1 is involved in cell-cell adhesion and cell migration. This gene has been studied in epilepsy 

[39, 40], its vital role in brain aging associated with synaptic plasticity [41]; etc. Using the GSEA 

analysis, we have found that Olfactory signaling pathway, Detection of chemical stimulus, 

Autonomic nervous system development were enriched. Our results are in accordance with the other 

researchers [42, 43].  
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