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ABSTRACT : 

This study uses remote sensing to map agricultural drought in the Constantine region (Algeria) between 

2021 and 2023. Three indices (NDVI, VHI, SPI) are calculated from Landsat images via the Google Earth 

Engine platform (GEE). The analysis reveals a degradation of climatic conditions and vegetation. NDVI and SPI 

decrease, while VHI increases, indicating increasing water stress. The negative spatial correlation between 

NDVI and VHI highlights the water-vegetation linkage. Local analysis shows severe drought in the South-West 

of the region. 

This study demonstrates the contribution of remote sensing via Google Earth Engine for the spatio-temporal 

monitoring of climate and vegetation. The results make it possible to anticipate the impacts of climate change on 

agriculture and thus adapt appropriate practices for food security. 

Keywords: Remote sensing, drought, NDVI, VHI, SPI, agriculture, Google Earth Engine, 

Constantine. 

1. INTRODUCTION 

Drought, along with other climate change-related phenomena, is increasingly impacting 

various parts of the world. It can be defined as a temporary natural imbalance in water 

availability, characterized by persistently below-normal precipitation that is difficult to 

predict, leading to a decrease in available water resources (Ujaval Gandhi, 2022). 

The spatial extent and intensity of this phenomenon have major socio-economic 

consequences (Quiring, 2009), particularly in the agricultural sector, which is most vulnerable 

to this climatic risk (Zerouali et al., 2021). In the absence of sufficient irrigation, farmers may 

have difficulty maintaining healthy crops. This can lead to a decrease in agricultural 

production and crop losses, directly affecting food security (Chuvieco, Li, & Yang, 2010). 

The latter represents one of the issues raised sharply internationally and has aroused 

particular interest at the last Conference of the Parties held in Egypt in November 2022. The 
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causal link between drought and climate change has been scientifically proven there, and 

several studies are currently focusing on new technologies and techniques that could stem 

these problems (Bégué et al., 2018).  

And with this in mind, technological advances, including remote sensing, represent a boon 

in this regard and make it possible to effectively monitor drought over large areas. Satellite 

remote sensing data in fact provides a synoptic view of the Earth's surface and can be used to 

assess the occurrence of drought in space (Rojas, Vrieling, & Rembold, 2011). Several 

remotely sensed drought indices have been developed and applied to account for the duration, 

intensity and severity of its extent (Ruiz Gracia, Gómez Díaz, Monterroso Rivas, & Uribe 

Gómez, 2019). The Normalized Difference Vegetation Index (NDVI) is now one of the most 

recognized indices (Lebourgeois et al., 2017). 

And to optimize their use, the combined use of vegetation indices with land surface 

temperature (LST) measurements is a commonly used approach for monitoring drought 

events (Tariq, Shu, Siddiqui, Imran, & Farhan, 2021). The Vegetation Health Index (VHI) has 

proven to be an effective indicator for detecting agricultural drought and serving as an early 

warning system. It integrates both the state of vegetation (VCI) and the thermal state of 

vegetation (TCI) over an observation period (Ghulam, Qin, & Zhan, 2007). The VHI index, 

calculated from remote sensing data, including the Normalized Difference Vegetation Index 

(NDVI) and Land Surface Temperature (LST) (Ujaval Gandhi, 2022) allows an accurate 

assessment of drought in agricultural areas. 

Thus, the implementation of drought adaptation measures is indispensable today. This can 

include the adoption of drought resilient agricultural practices, such as the use of crop 

varieties adapted to low water availability conditions and the implementation of efficient and 

more rational irrigation systems. It is also essential to improve drought monitoring and 

forecasting capabilities. This would allow farmers and authorities to take preventive action in 

a timely manner, such as implementing water management strategies and organizing drought 

management awareness programs. The data generated could serve as decision support tools. 

And like other countries around the world, Algeria is suffering from the effects of drought 

and is turning to technological advances, sustainable agricultural practices by promoting 

water conservation, improving water resource management and implementing adaptation 

measures to climate change. 

As part of this study, we used two approaches. The first is based on spatial remote sensing 

data from Landsat satellite imagery, namely: the Normalized Difference Vegetation Index 

(NDVI), the Vegetation Condition Index (VCI) and the Vegetation Health Index (VHI) which 

have been widely used for assessing vegetation condition and drought conditions (Rhee et al., 

2011).  

The second approach is based on the calculation of the SPI (Standardized Precipitation 

Index) which is the main meteorological index for measuring and monitoring drought 

intensity. 

The combination of these two approaches by correlation between VCI, VHI and SPI will 

characterize the origin of the drought. The study covered the last three years (2021, 2022, and 

2023) during the agricultural season (from October to May). 

The overall objective of this research is to map agricultural drought using remote sensing 

in the Constantine region based on specific indices from Landsat sensor data. A comparison 
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of drought conditions between 2021, 2022 and 2023 was also conducted to analyze variations 

and extent of drought over time. 

THE STUDY AREA 

With an area of 2,297.20 km2, Constantine links the coastal cities to the Aurès massif in 

the South. The geographical coordinates of Constantine are 36° 17' latitude and 6° 37' 

longitude, with an altitude ranging from 350 to 1100 meters (Figure 1). The climate of 

Constantine is characterized by cold winters and hot summers mainly due to the influence of 

continentality. The average annual rainfall varies from 350 to 700 mm depending on the year, 

the precipitation is very variable from North to South. They are often in the form of heavy 

showers or instantaneous storms. Spring frosts are more important than those of winter and 

last an average of 17 days per year. The succession of a wet year followed by two dry years 

illustrates well the constant threat of aridity. The population of Constantine is 1,272,488 

inhabitants in 2018, with a growth rate of 1.5% ((Benoumeldjadj et al., 2023) (Figure1). 

 

Figure 1 : Study area 

 

2. METOD AND MATERIALS 

The methodology adopted in this research consists of characterizing the meteorological 

drought for the agricultural seasons (from October to May) of the years 2021, 2022 and 2023, 

its intensity in the Constantine region and assessing its impact on agriculture. 

Several indices used to better identify and analyze the characteristics of drought, namely 

the normalized difference vegetation index (NDVI). This index** is the most commonly used 

to assess the state of vegetation (Ujaval Gandhi, 2022), determine the development stage and 

biomass of cultivated plants (Convey et al., 2014). It is well known for its sensitivity to the 

presence of green vegetation and for its effectiveness in monitoring droughts (Fang et al., 

2019). NDVI is the ratio of the difference and the sum of the near-infrared (NIR) and red 
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band reflectance. The NDVI highlights the difference between the visible red band (R) and 

the near infrared band (NIR). It is defined by the following formula: 

     
       

       
 

Other indices have been developed based on NDVI to reduce the impact of soil reflectance 

as well as that of the atmosphere. We can mention the "Vegetation Condition Index" (VCI) 

(F. N. Kogan, 1995), which normalizes the minimum and maximum interannual NDVI values 

at a given site. It is one of the most used normalized indices for drought condition monitoring 

(Gidey, Dikinya, Sebego, Segosebe, & Zenebe, 2018). It reflects the spatio-temporal 

variability of vegetation as it allows quantifying the impact of climate variations on this 

vegetation (Chuvieco et al., 2010). This index is widely used for its reliability and 

effectiveness in detecting drought situations on different vegetation types. It informs us about 

the vegetation conditions for the studied decade compared to extreme situations (Min and 

Max). It is calculated by the following formula (F. N. Kogan, 1995): 

    (
    ( )      (   )

    (   )      (   )
)     

 

NDVI(a)_ represents the NDVI value for the current period, while NDVI(min)_ and 

NDVI(max)_ correspond to the minimum and maximum NDVI values over the entire 

observation period, respectively. According to Kogan (2002), VCI is classified into five 

classes (Table 1).  

Table: 1 Classification des degrés du VCI. 

Drought classes VHI (%) 

Extreme drought 0<VCI<20 

Severe drought 20<VCI<40 

Moderate drougt 40<VCI<60 

Mild drought 60<VCI<80 

No drought 80<VCI<100 

 

However, the exclusive use of the vegetation index (VCI) was not enough to provide an 

accurate description of the drought analysis. In order to improve this analysis, a new index 

called the vegetation condition index (VCI) was developed. The goal was to take into account 

the different vegetation responses to in situ temperature using thermal channels for drought 

monitoring. The Temperature Condition Index (TCI) is based on brightness temperature. It is 

applicable at regional or continental scale, instantaneously or for periods up to one year. TCI 

also provides useful information regarding vegetation stress due to soil water saturation 

(Chuvieco et al., 2010). The formula given by Kogan (1995) is: 

    (
   (   )     ( )

   (   )     (   )
)     
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As the study area (Constantine) is characterized by highly variable agricultural land use 

(cereals, orchards, market gardening, pulses, olive trees and fodder), a versatile vegetation 

index was needed. In this regard, the Vegetation Health Index (VHI) has proven its 

effectiveness for monitoring and assessing droughts on different crop types (Nasser, Faour, & 

Touchart, 2020). It is also a valuable tool for near real-time monitoring of vegetation health 

and climate impacts. Combined with field data, these indicators prove to be excellent drought 

monitoring tools, especially in agriculture. It combines two indicators according to Kogan 

(1997), one for vegetation (Vegetation Condition Index, VCI) and the other for temperature 

(Temperature Condition Index, TCI). VCI is calculated from vegetation index data 

(Normalized Difference Vegetation Index - NDVI), according to the following formula 

(Gidey et al., 2018): 

VHI =λVCI+(1- λ)TCI 

VHI is used for various applications such as drought detection, drought duration, crop 

yield and production during the vegetation period (Unganai & Kogan, 1998). Based on 

previous research, we used an equal _λ_ of 0.5 (Index weighting weights). In this study, 

the following classification system was proposed for drought monitoring (Table 2). 

 

Table: 2 Classification pour la cartographie de la sécheresse 

 

Drought classes                                             VHI %              

Extreme drought                                                 <10       

Severe drought 10-20 

Moderate drought  20-30 

Mild drought 30-40 

No drought   >40 

 

(Diédhiou, Mering, Sy, & Sané, 2020) 

The Standardized Precipitation Index (SPI) is commonly used to identify meteorological 

drought due to its adapTableility to different timescales and climatic conditions. It is used to 

identify drought periods as well as drought severity for a period of time ranging from one 

month to 48 months. In our case, SPI was calculated for an eight-month period from October 

to May. It is calculated using the following formula: 

Where: SPI = Standardized Precipitation Index, Pi = Precipitation for the ith period,  

      Mean precipitation for the n periods , σ   Standard deviation of the n periods 

    
(     )

 
      

We also used variograms with Python language for correlation of variables, measurement 

processing, averaging, and diagrams. In this study, we used Landsat 8 data to identify 

droughts by analyzing NDVI and land surface temperature (LST). The maps obtained from 

the multispectral and thermal data were produced in Google Earth Engine and exported to 

ArcMap for analysis. The minimum and maximum reflectance values of NDVI and LST were 

extracted to calculate VCI and TCI. By combining these two indicators (VCI and TCI) using 
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an algorithm, VHI (Vegetation Health Index) images were obtained, which depend on thermal 

stress and vegetation state. A correlation between the spectral indices was made with 

MiniTable Software in order to better understand the influence of these indices on biomass 

and urban agriculture (Figure 2). 

 

Figure 2:Methodological workflow 

 

3. RESULTTS : 

3.1 Spectral indices used: 

NDVI21, NDVI22, NDVI23: Normalized Difference Vegetation Indices, related to 

photosynthetic activity and plant biomass, with an average value of 0.123 in 2021 and 0.121 

in 2022 and dropping to 0.101 in 2023 ranging between 0.01 to 0.35.  

- Low values (0.01-0.10) in the Northeast and Southwest of the area 
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- Moderate values (0.10-0.20) in the center (Figure 3). 

 

 

Figure 3 :Variogram map of NDVI 

 

VHI: Vegetation Health Index used to assess the water status of vegetation, with an 

average value of 10.90 in 2021, 14.69 in 2022 and 13.61 in 2023, ranging between 7.45 

and 19.9.  

However, some spatial variability in VHI is observed: 

- Low values (< 11) in the Southwest and East of the area.   

- High values (> 14) in the Northwest and center (Figure 4). 
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Figure 4 :Viogram map of VHI 

 

SPI allows estimating the chlorophyll content in vegetation. High values indicate 

vegetation rich in chlorophyll, the average value for 2021 is 6.62, for 2022 the value is 

0.58 and for 2023 the average value is 0.51. Some spatial variability in SPI is observed: 

- Low values (< 0.5) in the Southwest and Northeast. 

- Moderate to high values (> 0.6) in the center and Northwest (Figure 5). 

 

 

 
Figure 5 :Variogram map of SPI 
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We observe a slight increase in NDVI between 2021 and 2022, then a decrease in 2023. 

However, NDVI remains at a fairly low level (around 0.12), indicating sparse, low-density 

vegetation, dominated by bare soils and/or herbaceous layer.  

A marked increase in VHI between 2021 and 2022, revealing an improvement in water 

conditions for vegetation. In 2023 VHI decreases slightly but remains at a high level. A 

gradual decrease in SPI over the period, reflecting a decrease in chlorophyll content in 

vegetation (Figure 6 and 7). 

 

 

 

 

 

 

Figure 6:Variogram exponential (2021-2022-2023) 

 

 

Range: 0.055 

Nugget: 0.0007  

 

Range: 0.089 

Nugget: 0.0013 

 

Range: 0.067 

Nugget: 0.0004  

 

Range: 0.055 

Nugget: 0.598 

 

Range: 0.073 

Nugget: 0.724 

 

Range: 0.056 

Nugget: 0.260 

 

Range: 0.625 

Nugget: 3.835397223219592e-18 

 

Range: 0.737 

Nugget: 0.014 

 

Range: 0.637 

Nugget: 0.0001 
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Figure 7:Point diagram of NDVI(2021-2022-2023) 

 

 

 
 

 

Figure 8: Point diagram of VHI (2021-2022-2023) 
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Figure 9: Point diagram of SPI (2021-2022-2023) 

 

Overall, the spectral indices show a slight improvement in vegetation conditions from 2021 to 

2022, followed by a slight deterioration in 2023, while remaining at relatively low NDVI 

levels and high VHI. The decrease in SPI indicates a reduction in chlorophyll content over the 

3 years (figure 10). 
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Figure 10 :  NDVI,VHI and SPI map (2021-2022-2023) in order 

 

For the years 2021, 2022 and 2023, the drought classification system in the Constantine 

region gives the following results: 

2021:Moderate drought in the Southwest and East, Near normal conditions in the center. 

Mild wetness in the Northwest 

2022:Near normal conditions across most of the region, Mild wetness in parts of the 

center and North 

2023: Moderate drought emerging again in the East and Southwest, Near normal 

conditions in the Northwest and Mild wetness in the center (Table 3) 

 

 

Table: 3 The VHI and drought severity classes in Constantine. 

Year                  VHI %                  Drought classes              

2021                  10.90                       Severe drought                   

2022                   14.69                      Severe drought   

2023                   13.61         Severe drought   

 

3.2 Correlation between indices: 

A negative correlation is observed between NDVI and VHI for the 3 years, with correlation 

coefficients of -0.42 in 2021, -0.46 in 2022 and -0.51 in 2023. 

The cross-analysis of NDVI, VHI and SPI shows that the studied area underwent a 

deterioration of climatic conditions between 2021 and 2023, with a decrease in rainfall and an 

increase in water stress for vegetation. This led to a slight decrease in plant photosynthetic 

activity (Figure11). 
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Figure 11:Correlation between indexes 

 

4. Discussion : 

The decrease in NDVI observed in Constantine between 2021 and 2023 is consistent with the 

same trend observed in other semi-arid regions over similar recent periods. For example, a 

study conducted in West Africa (Andrieu, 2008) revealed a significant decrease in NDVI 

values of 15% in several countries in the Sahelian zone between 1982 and 2003. This 

decrease is attributed by the authors to the decline in rainfall and soil degradation. The results 

are consistent with other studies conducted in comparable contexts of climate change, such as 

a study conducted in the Sahel (Luis et al., 2009), which highlighted a significant 8% decrease 

in NDVI between 1982 and 2003 in this region, reflecting a reduction in plant cover under the 

combined effects of drought and anthropogenic pressure. 

The Vegetation Humidity Index (VHI) shows an increasing trend between 2021 and 2023, 

reflecting a decrease in vegetation moisture and an increase in temperatures, leading to 

increasing water stress. Among the factors impacting these results, we find the decrease in 

rainfall over the study area between 2021 and 2023, leading to drying of the soil and 

vegetation cover, as well as a rise in temperatures over the period, linked to climate change, 

exacerbating evapotranspiration and water stress. In his study (For, 2016) VHI is often more 

correlated with vegetation than VCI and TCI. 

The evolving SPI values reflect a drought episode in 2022, with rainfall deficits compared to 

normal seasonal averages. The years 2021 and 2023 had precipitation conforming to or 

slightly exceeding normals.   

Among the hypotheses that could explain this rainfall low of 2022, we can put forward the 

temporary disruption of the usual rainfall patterns in our area linked to natural climate 

variability and climate change. 
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The negative correlation between NDVI and VHI confirms that when NDVI increases (higher 

photosynthetic activity), VHI tends to decrease (less water stress).  

The correlation strengthens slightly between 2021 and 2023, going from moderate to medium 

according to the absolute values of the coefficients. This could indicate an accentuation of the 

link between the water status of vegetation and chlorophyll activity over the period (Figure 

12). 

 

 

Figure 12: NDVI,VHI and SPI Pearson Correlation 

 

However, there is variability in the intensity of the NDVI/VHI correlation across seasons 

within a given year. For example in 2021, the coefficient reaches -0.4 in summer but only -

0.29 in winter. This seasonal variability shows that other factors (temperature, sunlight etc.) 

also influence the NDVI/VHI relationship. 

Spatially, the NDVI/VHI correlation is stronger in drier areas (South of the study area) than in 

more humid areas to the North. Water stress logically accentuates the link between vegetation 

state and water availability.  

Our spatial analysis highlighting the accentuation of the NDVI/VHI correlation in the dry 

southern areas also aligns with the conclusions of previous studies (Acharki, Singh, do Couto, 

Arjdal, & Elbeltagi, 2023). This confirms the strong link between water availability and 

vegetation state in arid or semi-arid contexts. 

The results of the NDVI, VHI and SPI indices reveal a progressive deterioration of climatic 

conditions and vegetation state between 2021 and 2023 in the Constantine area (Figure 13). 
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Figure 13:VHI contour plot (2021,2022, 2023 in order) 

 

5. Conclusion : 

In conclusion, this study based on the analysis of remote sensing indices (NDVI, VHI, SPI) 

reveals a deterioration of climatic conditions and vegetation state between 2021 and 2023 in 

the Constantine region.  

The decrease in NDVI reflects a decline in photosynthetic activity and plant biomass, while 

the increase in VHI highlights an increase in water stress experienced by plants. SPI confirms 

a downward trend in rainfall over the period. These results are consistent with trends observed 

in other semi-arid regions and are part of a global context of climate change. They underscore 

the value of remote sensing to monitor changes in biophysical parameters indicative of 

environmental degradation. 

The negative relationship between NDVI and VHI observed spatially and temporally confirms 

the close link between water availability and chlorophyll activity in semi-arid environments. 

However, some factors like seasonality modulate this relationship. 

This study opens up perspectives for deepening the analysis of climate change effects by 

combining more indices, weather data and field measurements. High spatial and temporal 

resolution satellite monitoring appears essential to anticipate impacts on agriculture and adopt 

appropriate adaptation strategies. 
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