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ABSTRACT  

 In recent years Deep learning algorithms are used in many applications such as vision 

recognition, speech recognition, bioinformatics and so on. The Internet of Things is the next 

booming technology for real-time applications, Augmented reality, Self-driving cars, 

Environmental monitoring, Agriculture, health care Industrial applications and so on. Implement 

Deep learning with high accuracy comes under high energy and computing capabilities which are 

offered by cloud computing, but it has some drawbacks when comes to real-time applications such 

as latency, scalability, and privacy. IoT devices run on limited capacity and computing power but 

the recent advancements in hardware technologies to make IoT devices more powerful and capable 

to run Deep learning algorithms on them. The Deep learning algorithm running on Edge devices 

will reduce the latency delay and make the applications quick responsive. TinyML is the new 

technology which enables to deploy of deep learning models on Embedded devices and low-

powered microcontrollers. In this paper, we discussed what are the various ways to run a Deep-

learning algorithm on the Edge-devices and microcontrollers and how the accuracy and memory 

will affect while converting the Deep Learning model for Edge devices. 
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1.INTRODUCTION  

           Connected Devices of IoT (Internet of Things) have increased exponentially over 

the past few years and are predicted to reach 1 trillion across various market segments such as AR, 

Health care, smart home, smart industry and so on by 2035. These IoT devices typically consist of 
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sensors to collect data including audio, video, GPS, Temperature, humidity etc. Most of the 

collected data from sensors are noisy and these raw data are processed by analytics tools in the 

cloud to enable a wide range of applications. Running the analytics tool on the cloud, have some 

drawbacks such as latency, scalability, and privacy. 

Latency: Real-time inference is critical to many applications. For example, healthcare, an 

autonomous vehicle, and a voice-based-assistive application needs quick response. 

Scalability: Network access to the cloud can become a bottleneck as the number of 

connected devices increases. Uploading all data to the cloud is also inefficient in terms of network 

resource utilization, particularly if not all data from all sources are needed for deep learning. 

Privacy: Sending data to the cloud risks privacy concerns from the users who own the data 

or whose behaviours are captured in the data. 

Edge computing is a viable 

solution to meet the latency, 

scalability, and privacy challenges 

described earlier in this section. Edge 

Computing is computation done on 

the edge-devices or edge server which 

is close to the source of data. 

Fig 1.1. Deep learning Model on Edge devices 

 

The research gap in data analytics of IoT applications in edge computing using deep 

learning is evident from the need for techniques that can handle large volumes of data, 

heterogeneity and variability of data, deployment optimization, and privacy and security concerns. 

Addressing these gaps will help unlock the full potential of IoT applications for real-world use 

cases. 

2. DEEP LEARNING METHODS FOR EDGE COMPUTING 

RBM Restricted Boltzmann machine (RBM) is a kind of probabilistic graphical models 

that can be interpreted as stochastic neural networks. A typical two-layer RBM includes a visible 

layer that contains the input we know and a hidden layer that contains the latent variables. 
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Auto Encoders An autoencoder includes an input layer and an output layer that are 

connected by one or multiple hidden layers. The shape of the input layer and the output layer are 

the same. 

DNN A deep neural network (or deep fully connected neural network) usually has a deeper 

layer structure for more complicated learning tasks. DNN consists of an input layer, several hidden 

layers, and an output layer, where the output of each layer is fed to the next layer with activation 

functions 

CNN Convolutional neural networks (CNNs) are designed to process data that comes in 

the form of multiple arrays. CNN receives 2D data structures and extracts high-level features 

through convolutional layers which is the core of CNN architecture 

RNN Different from CNNs that are good at abstracting spatial features, recurrent neural 

networks (RNNs) are designed for processing sequential or time-series data. The input to an RNN 

includes both the current sample and the previously 

observed samples. 

DRL Deep reinforcement learning (DRL) is a combination of deep learning (DL) and 

reinforcement learning (RL) It aims to build an agent that can learn the best action choices over a 

set of states through the interaction with the environment. 

2.1. DEEP NEURAL NETWORK MODEL ON EDGE DEVICES  

Edge devices have their own limitation on energy, memory, and computation capabilities. 

Implementing deep learning models on edge devices is challenging because of these limitations. 

With the new advancement of computing technology and hardware technology, it is possible to 

implement deep learning on edge devices. In this paper, we review the suitable Deep learning 

algorithms run on edge devices and the methods to fix the gap between the deep learning from the 

cloud to the edge devices. 

To develop an efficient deep learning model for IoT applications is the need for lightweight 

neural networks that require less computational resources. While there has been significant 

progress in developing deep learning models for various applications, these models are often too 

large and computationally intensive to be deployed on edge devices with limited resources 

[12],[13],[17],[18]. There is a need for research that focuses on developing more efficient deep 

learning models that can run on low-power devices such as microcontrollers [22],[23],[24], 

without sacrificing accuracy. Additionally, there has been researching on developing deep learning 
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models that are specifically designed for specific IoT applications, such as activity recognition 

[22],[23] or anomaly detection in sensor data 

Deep learning can be used to perform both supervised learning and unsupervised learning. 

The metrics of success depend on the application domain where deep learning is being applied. To 

convert the deep learning model runnable on edge devices majorly use the following techniques. 

model compression [2],[3] such as Layer pruning [4],[7] drop out [3], reduce the number of 

neurons available in the model [9], parameter quantization [4],[5],[6] and so on.  

Model Design: When designing DNN models for resource-constrained devices, machine 

learning researchers often focus on designing models with a reduced number of parameters in the 

DNN model [6],[7], thus reducing memory and execution latency, while aiming to preserve high 

accuracy, there are many techniques for doing so, and we briefly mention several popular deep 

learning models for resource-constrained devices drawn from computer vision. 

Model Compression: Compressing the DNN model is another way to enable DNNs on edge 

devices. Such methods usually seek to compress the existing DNN models [7],[9] with minimal 

accuracy loss compared with the original model. There are several popular model compression 

methods: parameter quantization [16], parameter pruning, and knowledge distillation  

  Hardware: To speed up inference of deep learning, hardware manufacturers are leveraging 

existing hardware such as CPUs and GPUs, as well as producing custom application-specific 

integrated circuits (ASICs) for deep learning, such as Google’s tensor processing unit [8], [10] 

(TPU). 

Software: software accelerator [10] for low-power devices, RS TensorFlow for light 

devices to construct DNN model. The different techniques to deploy the DNN model in Edge 

devices is analysed in Table 2.1. 

 

SI. 

No 

Author Methodology Algorithms Application  Devices   Significance 

1. HeLi, et.al Adaptive Deep 

Learning 

-Prediction of 

DNN model 

based on the Input 

image [2] 

 

Inception, 

Resent and 

mobile net 

Image 

Classification 

NVIDIA 

Jetson X2 

Reduce 

inference  
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2. S. Liu, Y. 

Lin, Z. Zhou 

2017 

DeepIoT-Model 

Compression  

-Dropout (Get 

existing weight of 

original model 

and adjust based 

redundancy) [3] 

 

LeNet, 

VGGNET 

And others 

Text, Image 

and Speech 

recognition 

Intel Edison 

computing 

platform 

Still use 

existing 

libraries 

Reduce 

model size, 

shorten 

execution 

time and 

consume less 

energy 

3. Lai et.al 

 

CMSIS-NN, a 

library of 

optimized 

software kernels 

to enable 

deployment of 

NNs Using Fixed 

point quantization 

[4] 

7-layer CNN Image 

classification, 

Keyword 

spotting 

Arm cortex 

M 

Micro 

controller 

Minimal 

memory, S. 

Han et al 

suitable for 

keyword 

spotting 

application 

4. S. Han et al 

 

ESE – Efficient 

Speech 

Recognition 

Engine 

with Sparse 

LSTM on FPGA 

[5] 

1.Load balance 

aware pruning 

2.Quantaization 

LSTM Speech 

recognition 

XCKU060 

FPGA 

Reduce the 

model size 

and increase 

accuracy 

5. Bhattacharya 

et.al 

sparse 

factorizations 

Separation of 

Deep Learning 

Layers 

for Constrained 

Resource 

Inference on 

Wearables [6] 

Alexnet, 

VGGnet 

Speech and 

image 

recognition 

Qualcom 

snapdragon 

400 

Optimize 

convolution 

filters, 

Mobile and 

IoT platforms 

6. S. Yao et.al AdaDeep – On 

demand Deep 

model 

compression 

Automatic 

Hyperparameter 

Optimization [7] 

Lenet, 

AlexNet and 

VGGNet 

Image,Activity 

and Audio 

Smartphones 

and 

wearables 

Automatic 

compression 

based on user 

requirements 

Volume 93, No. 5, 2024

Page 341

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.13934928

ISSN: 0369-8963



7. N. Loc et.al Mobile GPU- 

Deep Mon – 

reuse 

intermediate 

partial results 

while processing 

convolutional 

layers 

caching 

mechanism 

reduces this 

repetitive 

computation 

significantly [8] 

YOLO, 

MatConvNet 

Object 

Detction 

Samsung 

galaxy S7 

Suitable for 

video frames 

1 and 2 per 

second 

 

8. Y. Wang 

et.al 

 

 

RSTensorFlow 

[9] 

 

24-layer 

CNN, LSTM 

Hand gesture 

recognition 

Nexus 5x supports 

heterogeneous 

computing 

resources for 

commodity 

Android 

device 

9. N. D. Lane et 

al 

 

DEEPX Software 

Accelerator [10] 

Alexnet and 

others 

Speech and 

image 

Qualcom 

snapgragon 

800 

Support 

mobile 

machine 

learning 

inference 

Table 2.1. Deep learning models on Edge Devices. 

 

2.2. DEEP LEARNING ON MICROCONTROLLERS  

Tiny Machine Learning (TinyML) brings cognitive capabilities to resourced-constrained 

IoT devices such as Microcontroller units. The MCUNet is used to jointly design the neural 

network architecture (TinyNAS) and the inference library (TinyEngine), enabling deep learning 

on tiny hardware resources [22],[23],[24]. It enables low-latency, low power and low bandwidth 

model inference at edge devices. While a standard consumer CPUs consume between 65 watts and 

85 watts and a standard consumer GPU consumes anywhere between 200 watts to 500 watts, a 

typical microcontroller consumes power in the order of milliwatts or microwatts. That is around a 

thousand times less power consumption. This low power consumption enables the TinyML devices 

to run unplugged on batteries for weeks, months, and in some cases, even years, while running ML 

applications on edge. The Deep Learning model deployed on various microcontrollers is analysed  
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in Table 2.1. The TinyEngine Model is compared with the other MCUNET model in terms of  

latency as milli-seconds displayed in Figure 2.1, Memory usage as KB displayed in Figure 2.2 and 

flash memory as KB usage displayed in Figure 2.3.  

SI.NO Author Methodology Algorithms Application  Devices   Significance 

1 Lin, J., et 

al.  

Memory-

Efficient 

Patch-based 

Inference [22] 

MCUNetV2 Wake word 

prediction  

256kB 

SRAM/1MB 

Flash and 

512kB 

SRAM/2MB 

Flash 

Wearable 

devices & 

achieve 

>90% 

accuracy 

under only 

mcunet-
in0

mcunet-
in1

mcunet-
in2

mcunet-
in3

TF-Lite Micro 161 219 460 493

CMSIS-NN 161 219 469 493

X-CUBE-AI 69 106 238 243

TinyEngine 49 96 215 260

0
100
200
300
400
500
600

Figure 2.2. PEAK MEMORY RESULTS

TF-Lite Micro CMSIS-NN X-CUBE-AI TinyEngine

0 200 400 600 800 1000 1200

TF-Lite Micro

CMSIS-NN

X-CUBE-AI

TinyEngine

Figure 2.3. FLASH MEMORY 

USAGE 

mcunet-in3 mcunet-in2 mcunet-in1 mcunet-in0

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

TF-Lite Micro TinyEngine CMSIS-NN X-CUBE-AI

mcunet-in0 586 25 51 35

mcunet-in1 1227 56 103 63

mcunet-in2 6463 280 642 351

mcunet-in3 7821 336 770 414

Figure 2.1. LATENCY RESULTS 

mcunet-in0 mcunet-in1 mcunet-in2 mcunet-in3
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32kB 

SRAM, 

2 Lin, Ji, et 

al.  

Tiny NAS 

Tiny Engine 

[23] 

MCUNet Wake word 

prediction  

Micro 

Controllers  

Arduuino 

nano BLE 

Sense  

ImageNet 

accuracy 

(70.7%) 

3 Lin, Ji, et 

al.  

Quantization-

Aware Scaling 

[24] 

Tiny 

Training 

Engine 

Wake work 

predication  

Micro 

controller 

256KB 

SRAM and 

1MB Flash 

Reduce 

Training 

memory 

1000X 

compared 

with 

PyTorch and 

TensorFlow) 

 

Table 2.1 Deep Learning Models on Micro controllers 

CONCLUSION 

In conclusion, deep learning on edge devices for IoT is an emerging area of research that has 

gained significant attention in recent years. In this paper, we conducted a survey of the state-of-

the-art deep learning techniques for edge devices in IoT applications. We discussed the challenges 

associated with deploying deep learning models on resource-constrained edge devices and 

highlighted various approaches that have been proposed to overcome these challenges. We also 

reviewed various hardware and software frameworks (TinyML) that can be used to deploy deep 

learning models on edge devices, including TensorFlow Lite, PyTorch Mobile, and Edge TPU. 

Furthermore, we discussed the performance metrics that are commonly used to evaluate the 

effectiveness of these frameworks, including accuracy, latency, and energy consumption. 
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