
SURVEY ON DEEP LEARNING MODELS ON EDGE DEVICES

FOR IOT APPLICATIONS

Mr. G .MUTHUPANDI,

Assistant Professor/CSE,

Ramco Institute of Technology,

Rajapalayam, Tamil Nadu,

Mr. S. MANICKAM, PhD Scholar,

Assistant Professor/CSE,

Saveetha Engineering College,

Chennai, Tamil Nadu,

ABSTRACT

 In recent years Deep learning algorithms are used in many applications such as vision

recognition, speech recognition, bioinformatics and so on. The Internet of Things is the next

booming technology for real-time applications, Augmented reality, Self-driving cars,

Environmental monitoring, Agriculture, health care Industrial applications and so on. Implement

Deep learning with high accuracy comes under high energy and computing capabilities which are

offered by cloud computing, but it has some drawbacks when comes to real-time applications such

as latency, scalability, and privacy. IoT devices run on limited capacity and computing power but

the recent advancements in hardware technologies to make IoT devices more powerful and capable

to run Deep learning algorithms on them. The Deep learning algorithm running on Edge devices

will reduce the latency delay and make the applications quick responsive. TinyML is the new

technology which enables to deploy of deep learning models on Embedded devices and low-

powered microcontrollers. In this paper, we discussed what are the various ways to run a Deep-

learning algorithm on the Edge-devices and microcontrollers and how the accuracy and memory

will affect while converting the Deep Learning model for Edge devices.

Keywords: Edge computing, Deep learning, IoT, Embedded device ML, TinyML.

1.INTRODUCTION

 Connected Devices of IoT (Internet of Things) have increased exponentially over

the past few years and are predicted to reach 1 trillion across various market segments such as AR,

Health care, smart home, smart industry and so on by 2035. These IoT devices typically consist of

Volume 93, No. 5, 2024

Page 337

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.13934928

ISSN: 0369-8963

sensors to collect data including audio, video, GPS, Temperature, humidity etc. Most of the

collected data from sensors are noisy and these raw data are processed by analytics tools in the

cloud to enable a wide range of applications. Running the analytics tool on the cloud, have some

drawbacks such as latency, scalability, and privacy.

Latency: Real-time inference is critical to many applications. For example, healthcare, an

autonomous vehicle, and a voice-based-assistive application needs quick response.

Scalability: Network access to the cloud can become a bottleneck as the number of

connected devices increases. Uploading all data to the cloud is also inefficient in terms of network

resource utilization, particularly if not all data from all sources are needed for deep learning.

Privacy: Sending data to the cloud risks privacy concerns from the users who own the data

or whose behaviours are captured in the data.

Edge computing is a viable

solution to meet the latency,

scalability, and privacy challenges

described earlier in this section. Edge

Computing is computation done on

the edge-devices or edge server which

is close to the source of data.

Fig 1.1. Deep learning Model on Edge devices

The research gap in data analytics of IoT applications in edge computing using deep

learning is evident from the need for techniques that can handle large volumes of data,

heterogeneity and variability of data, deployment optimization, and privacy and security concerns.

Addressing these gaps will help unlock the full potential of IoT applications for real-world use

cases.

2. DEEP LEARNING METHODS FOR EDGE COMPUTING

RBM Restricted Boltzmann machine (RBM) is a kind of probabilistic graphical models

that can be interpreted as stochastic neural networks. A typical two-layer RBM includes a visible

layer that contains the input we know and a hidden layer that contains the latent variables.

Volume 93, No. 5, 2024

Page 338

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.13934928

ISSN: 0369-8963

Auto Encoders An autoencoder includes an input layer and an output layer that are

connected by one or multiple hidden layers. The shape of the input layer and the output layer are

the same.

DNN A deep neural network (or deep fully connected neural network) usually has a deeper

layer structure for more complicated learning tasks. DNN consists of an input layer, several hidden

layers, and an output layer, where the output of each layer is fed to the next layer with activation

functions

CNN Convolutional neural networks (CNNs) are designed to process data that comes in

the form of multiple arrays. CNN receives 2D data structures and extracts high-level features

through convolutional layers which is the core of CNN architecture

RNN Different from CNNs that are good at abstracting spatial features, recurrent neural

networks (RNNs) are designed for processing sequential or time-series data. The input to an RNN

includes both the current sample and the previously

observed samples.

DRL Deep reinforcement learning (DRL) is a combination of deep learning (DL) and

reinforcement learning (RL) It aims to build an agent that can learn the best action choices over a

set of states through the interaction with the environment.

2.1. DEEP NEURAL NETWORK MODEL ON EDGE DEVICES

Edge devices have their own limitation on energy, memory, and computation capabilities.

Implementing deep learning models on edge devices is challenging because of these limitations.

With the new advancement of computing technology and hardware technology, it is possible to

implement deep learning on edge devices. In this paper, we review the suitable Deep learning

algorithms run on edge devices and the methods to fix the gap between the deep learning from the

cloud to the edge devices.

To develop an efficient deep learning model for IoT applications is the need for lightweight

neural networks that require less computational resources. While there has been significant

progress in developing deep learning models for various applications, these models are often too

large and computationally intensive to be deployed on edge devices with limited resources

[12],[13],[17],[18]. There is a need for research that focuses on developing more efficient deep

learning models that can run on low-power devices such as microcontrollers [22],[23],[24],

without sacrificing accuracy. Additionally, there has been researching on developing deep learning

Volume 93, No. 5, 2024

Page 339

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.13934928

ISSN: 0369-8963

models that are specifically designed for specific IoT applications, such as activity recognition

[22],[23] or anomaly detection in sensor data

Deep learning can be used to perform both supervised learning and unsupervised learning.

The metrics of success depend on the application domain where deep learning is being applied. To

convert the deep learning model runnable on edge devices majorly use the following techniques.

model compression [2],[3] such as Layer pruning [4],[7] drop out [3], reduce the number of

neurons available in the model [9], parameter quantization [4],[5],[6] and so on.

Model Design: When designing DNN models for resource-constrained devices, machine

learning researchers often focus on designing models with a reduced number of parameters in the

DNN model [6],[7], thus reducing memory and execution latency, while aiming to preserve high

accuracy, there are many techniques for doing so, and we briefly mention several popular deep

learning models for resource-constrained devices drawn from computer vision.

Model Compression: Compressing the DNN model is another way to enable DNNs on edge

devices. Such methods usually seek to compress the existing DNN models [7],[9] with minimal

accuracy loss compared with the original model. There are several popular model compression

methods: parameter quantization [16], parameter pruning, and knowledge distillation

 Hardware: To speed up inference of deep learning, hardware manufacturers are leveraging

existing hardware such as CPUs and GPUs, as well as producing custom application-specific

integrated circuits (ASICs) for deep learning, such as Google’s tensor processing unit [8], [10]

(TPU).

Software: software accelerator [10] for low-power devices, RS TensorFlow for light

devices to construct DNN model. The different techniques to deploy the DNN model in Edge

devices is analysed in Table 2.1.

SI.

No

Author Methodology Algorithms Application Devices Significance

1. HeLi, et.al Adaptive Deep

Learning

-Prediction of

DNN model

based on the Input

image [2]

Inception,

Resent and

mobile net

Image

Classification

NVIDIA

Jetson X2

Reduce

inference

Volume 93, No. 5, 2024

Page 340

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.13934928

ISSN: 0369-8963

2. S. Liu, Y.

Lin, Z. Zhou

2017

DeepIoT-Model

Compression

-Dropout (Get

existing weight of

original model

and adjust based

redundancy) [3]

LeNet,

VGGNET

And others

Text, Image

and Speech

recognition

Intel Edison

computing

platform

Still use

existing

libraries

Reduce

model size,

shorten

execution

time and

consume less

energy

3. Lai et.al

CMSIS-NN, a

library of

optimized

software kernels

to enable

deployment of

NNs Using Fixed

point quantization

[4]

7-layer CNN Image

classification,

Keyword

spotting

Arm cortex

M

Micro

controller

Minimal

memory, S.

Han et al

suitable for

keyword

spotting

application

4. S. Han et al

ESE – Efficient

Speech

Recognition

Engine

with Sparse

LSTM on FPGA

[5]

1.Load balance

aware pruning

2.Quantaization

LSTM Speech

recognition

XCKU060

FPGA

Reduce the

model size

and increase

accuracy

5. Bhattacharya

et.al

sparse

factorizations

Separation of

Deep Learning

Layers

for Constrained

Resource

Inference on

Wearables [6]

Alexnet,

VGGnet

Speech and

image

recognition

Qualcom

snapdragon

400

Optimize

convolution

filters,

Mobile and

IoT platforms

6. S. Yao et.al AdaDeep – On

demand Deep

model

compression

Automatic

Hyperparameter

Optimization [7]

Lenet,

AlexNet and

VGGNet

Image,Activity

and Audio

Smartphones

and

wearables

Automatic

compression

based on user

requirements

Volume 93, No. 5, 2024

Page 341

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.13934928

ISSN: 0369-8963

7. N. Loc et.al Mobile GPU-

Deep Mon –

reuse

intermediate

partial results

while processing

convolutional

layers

caching

mechanism

reduces this

repetitive

computation

significantly [8]

YOLO,

MatConvNet

Object

Detction

Samsung

galaxy S7

Suitable for

video frames

1 and 2 per

second

8. Y. Wang

et.al

RSTensorFlow

[9]

24-layer

CNN, LSTM

Hand gesture

recognition

Nexus 5x supports

heterogeneous

computing

resources for

commodity

Android

device

9. N. D. Lane et

al

DEEPX Software

Accelerator [10]

Alexnet and

others

Speech and

image

Qualcom

snapgragon

800

Support

mobile

machine

learning

inference

Table 2.1. Deep learning models on Edge Devices.

2.2. DEEP LEARNING ON MICROCONTROLLERS

Tiny Machine Learning (TinyML) brings cognitive capabilities to resourced-constrained

IoT devices such as Microcontroller units. The MCUNet is used to jointly design the neural

network architecture (TinyNAS) and the inference library (TinyEngine), enabling deep learning

on tiny hardware resources [22],[23],[24]. It enables low-latency, low power and low bandwidth

model inference at edge devices. While a standard consumer CPUs consume between 65 watts and

85 watts and a standard consumer GPU consumes anywhere between 200 watts to 500 watts, a

typical microcontroller consumes power in the order of milliwatts or microwatts. That is around a

thousand times less power consumption. This low power consumption enables the TinyML devices

to run unplugged on batteries for weeks, months, and in some cases, even years, while running ML

applications on edge. The Deep Learning model deployed on various microcontrollers is analysed

Volume 93, No. 5, 2024

Page 342

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.13934928

ISSN: 0369-8963

in Table 2.1. The TinyEngine Model is compared with the other MCUNET model in terms of

latency as milli-seconds displayed in Figure 2.1, Memory usage as KB displayed in Figure 2.2 and

flash memory as KB usage displayed in Figure 2.3.

SI.NO Author Methodology Algorithms Application Devices Significance

1 Lin, J., et

al.

Memory-

Efficient

Patch-based

Inference [22]

MCUNetV2 Wake word

prediction

256kB

SRAM/1MB

Flash and

512kB

SRAM/2MB

Flash

Wearable

devices &

achieve

>90%

accuracy

under only

mcunet-
in0

mcunet-
in1

mcunet-
in2

mcunet-
in3

TF-Lite Micro 161 219 460 493

CMSIS-NN 161 219 469 493

X-CUBE-AI 69 106 238 243

TinyEngine 49 96 215 260

0
100
200
300
400
500
600

Figure 2.2. PEAK MEMORY RESULTS

TF-Lite Micro CMSIS-NN X-CUBE-AI TinyEngine

0 200 400 600 800 1000 1200

TF-Lite Micro

CMSIS-NN

X-CUBE-AI

TinyEngine

Figure 2.3. FLASH MEMORY

USAGE

mcunet-in3 mcunet-in2 mcunet-in1 mcunet-in0

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

TF-Lite Micro TinyEngine CMSIS-NN X-CUBE-AI

mcunet-in0 586 25 51 35

mcunet-in1 1227 56 103 63

mcunet-in2 6463 280 642 351

mcunet-in3 7821 336 770 414

Figure 2.1. LATENCY RESULTS

mcunet-in0 mcunet-in1 mcunet-in2 mcunet-in3

Volume 93, No. 5, 2024

Page 343

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.13934928

ISSN: 0369-8963

32kB

SRAM,

2 Lin, Ji, et

al.

Tiny NAS

Tiny Engine

[23]

MCUNet Wake word

prediction

Micro

Controllers

Arduuino

nano BLE

Sense

ImageNet

accuracy

(70.7%)

3 Lin, Ji, et

al.

Quantization-

Aware Scaling

[24]

Tiny

Training

Engine

Wake work

predication

Micro

controller

256KB

SRAM and

1MB Flash

Reduce

Training

memory

1000X

compared

with

PyTorch and

TensorFlow)

Table 2.1 Deep Learning Models on Micro controllers

CONCLUSION

In conclusion, deep learning on edge devices for IoT is an emerging area of research that has

gained significant attention in recent years. In this paper, we conducted a survey of the state-of-

the-art deep learning techniques for edge devices in IoT applications. We discussed the challenges

associated with deploying deep learning models on resource-constrained edge devices and

highlighted various approaches that have been proposed to overcome these challenges. We also

reviewed various hardware and software frameworks (TinyML) that can be used to deploy deep

learning models on edge devices, including TensorFlow Lite, PyTorch Mobile, and Edge TPU.

Furthermore, we discussed the performance metrics that are commonly used to evaluate the

effectiveness of these frameworks, including accuracy, latency, and energy consumption.

REFERENCES

1. J. Chen and X. Ran, "Deep Learning With Edge Computing: A Review," in

Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019, doi:

10.1109/JPROC.2019.2921977.

2. B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and Z. Wang, “Adaptive deep learning

model selection on embedded systems,” in Proc. LCTES, 2018,pp. 31–43.

3. S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “DeepIoT: Compressing deep neural

network structures for sensing systems with a compressor-critic framework,” in Proc.

SenSys, 2017, pp. 1–4

Volume 93, No. 5, 2024

Page 344

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.13934928

ISSN: 0369-8963

4. L. Lai and N. Suda, “Enabling deep learning at the IoT edge,” in Proc. Int. Conf.

Comput.-Aided Design (ICCAD), 2018, p. 135.

5. S. Han et al., “ESE: Efficient speech recognition engine with sparse LSTM on FPGA,”

in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays (FPGA), 2017, pp. 75–

84.

6. S. Bhattacharya and N. D. Lane, “Sparsification and separation of deep learning layers

for constrained resource inference on wearables,” in Proc. 14th ACM Conf. Embedded

Netw. Sensor Syst. CD-ROM (SenSys), 2016, pp. 176–189.

7. S. Yao, Y. Zhao, Z. Aston, L. Su, and T. Abdelzaher, “On-demand deep model

compression for mobile devices: A usage-driven model selection framework,” in Proc.

MobiSys, 2018, pp. 389–400.

8. N. Loc Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile GPU-based deep learning

framework for continuous vision applications,” in Proc. ACM MobiSys, 2017, pp. 82–

95.

9. M. Alzantot, Y. Wang, Z. Ren, and M. B. Srivastava, “RSTensorFlow: GPU enabled

tensorflow for deep learning on commodity android devices,” in Proc. 1st Int.

Workshop Deep Learn. Mobile Syst. Appl. (EMDL), 2017, pp. 7–12.

10. N. D. Lane et al., “DeepX: A software accelerator for low-power deep learning

inference on mobile devices,” in Proc. 15th ACM/IEEE Int. Conf. Inf. Process. Sensor

Netw. (IPSN), 2016, p. 23.

11. Manogaran, Gunasekaran, et al. "Wearable IoT smart-log patch: An edge computing-

based Bayesian deep learning network system for multi access physical monitoring

system." Sensors 19.13 (2019): 3030.

12. Huda, SM Asiful, and Sangman Moh. "Survey on computation offloading in UAV-

Enabled mobile edge computing." Journal of Network and Computer

Applications (2022): 103341.

13. Sulieman, Nour Alhuda, Lorenzo Ricciardi Celsi, Wei Li, Albert Zomaya, and

Massimo Villari. "Edge-oriented computing: A survey on research and use

cases." Energies 15, no. 2 (2022): 452.

Volume 93, No. 5, 2024

Page 345

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.13934928

ISSN: 0369-8963

14. Quy, Vu Khanh, et al. "Smart healthcare IoT applications based on fog computing:

architecture, applications and challenges." Complex & Intelligent Systems 8.5 (2022):

3805-3815.

15. Hartmann, Morghan, Umair Sajid Hashmi, and Ali Imran. "Edge computing in smart

health care systems: Review, challenges, and research directions." Transactions on

Emerging Telecommunications Technologies 33.3 (2022): e3710.

16. Zhang, Michael, et al. "Seneca: Fast and low cost hyperparameter search for machine

learning models." 2019 IEEE 12th International Conference on Cloud Computing

(CLOUD). IEEE, 2019.

17. Zhang, Michael, Chandra Krintz, and Rich Wolski. "Edge‐adaptable serverless

acceleration for machine learning Internet of Things applications." Software: Practice

and Experience 51.9 (2021): 1852-1867.

18. Zhang, Michael, Chandra Krintz, and Rich Wolski. "Stoic: Serverless teleoperable

hybrid cloud for machine learning applications on edge device." 2020 IEEE

International Conference on Pervasive Computing and Communications Workshops

(PerCom Workshops). IEEE, 2020.

19. Mazumder, Mark, et al. "Few-shot keyword spotting in any language." arXiv preprint

arXiv:2104.01454 (2021).

20. Kumar, Yogesh, Apeksha Koul, and Chamkaur Singh. "A deep learning approaches in

text-to-speech system: a systematic review and recent research

perspective." Multimedia Tools and Applications 82.10 (2023): 15171-15197.

21. Banbury, Colby R., et al. "Benchmarking tinyml systems: Challenges and

direction." arXiv preprint arXiv:2003.04821 (2020).

22. Lin, J., et al. "MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep

Learning. arXiv 2021." arXiv preprint arXiv:2110.15352.

23. Lin, Ji, et al. "Mcunet: Tiny deep learning on iot devices." Advances in Neural

Information Processing Systems 33 (2020): 11711-11722.

24. Lin, Ji, et al. "On-device training under 256kb memory." arXiv preprint

arXiv:2206.15472 (2022).

Volume 93, No. 5, 2024

Page 346

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.13934928

ISSN: 0369-8963

