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Abstract 

To improve the stability and convergence of recurrent neural networks (RNNs) for time series 

forecasting applications, this research explores the use of fixed-point theory. Our goal is to 

enhance the generalization performance of RNN models and reduce stability problems by 

including a contraction mapping check into the training process. We assess the performance of 

RNNs with and without contraction mapping versus conventional machine learning models using 

the airline passenger dataset as a case study. Our tests demonstrate how contraction mapping can 

improve model stability and lead to higher predicted accuracy. The findings support a 

comprehensive strategy that combines theoretical understanding with empirical study and 

highlights the significance of mathematical concepts in deep learning research. 

Keywords: Fixed point theorem, recurrent neural network, contraction mapping, machine 

learning. 

 

1. Introduction 

In machine learning, recurrent neural networks, or RNNs (see Fig. 1), have become 

indispensable, especially for tasks involving sequential input, such as speech recognition, time 

series prediction, and language modeling [1]. Because RNNs may retain a recollection of past 

inputs, unlike typical neural networks, they are ideally suited for processing sequences in which 

context is crucial. As training goes on, maintaining the stability and convergence of the hidden 

states is a major problem for RNNs [2]. The network may become unstable if the hidden states 

do not converge, resulting in subpar performance and challenging training. 

To overcome the shortcomings of more conventional neural networks, including Feedforward 

Neural Networks (FNNs), recurrent neural networks (RNNs) were developed to process 

sequential input [3]. Without taking into account the context or order of previous inputs, FNN 

processes each input independently through a number of hidden layers. As a result, it is unable to 

grasp the dependencies between inputs and handle sequential data well [4,5,6]. FNNs are 

therefore not well adapted for sequential processing tasks like time series analysis, speech 

recognition, machine translation, language modeling, and many other applications that call for 

sequential processing [7]. RNN enters the scene to overcome the drawbacks of conventional 

neural networks. 
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By adding a recurrent link that allows data to move from one time step to the next, RNN 

overcomes these constraints. The network can gather information from earlier steps and apply it 

to the current step, allowing the model to learn temporal dependencies and handle input of 

variable length [8,9,10]. This recurrent connection allows RNNs to maintain internal memory, 

where the output of each step is fed back as an input to the next step. 

By using Banach's Fixed Point Theorem, a key finding in fixed point theory, this work seeks to 

address this difficulty [11]. A contraction mapping over an entire metric space has a unique fixed 

point under certain conditions, and Banach's theorem ensures that iterative applications of the 

mapping will converge to this fixed point. Banach's theorem allows us to guarantee that the 

hidden states converge to a stable point by considering the state update equations of an RNN as a 

contraction mapping. 

 
Fig. 1 Recurrent Neural Network architecture diagram 
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The first step in applying Banach's Fixed Point Theorem to RNNs is to rewrite the state update 

equation. Typically, an RNN's hidden state ℎ𝑡 at time step t is updated according to the equation: 

ℎ𝑡 = 𝑡(𝑡ℎℎ𝑡−1 + 𝑡𝑡𝑡𝑡 + 𝑡)                (1) 

Where 𝑡ℎ,𝑡𝑡 are weight matrices, b is the bias vector and 𝜎 is a non-linear activation function. 

It is ensured that this update equation produces a contraction mapping, i.e., for any two hidden 

states, h1 and h2, the distance between their images under the mapping is smaller than k times the 

distance between h1 and h2. To do this, we must choose a constant k, such that  0≤k<1.  

Banach's theorem can be utilized to ensure that the concealed states will converge once it has 

been established that the state update equation is a contraction mapping. This entails creating an 

algorithm based on Python to confirm the contraction condition and including it in the RNN's 

training procedure. We can increase the stability of the hidden states and thus improve training 

and inference performance by making sure that the contraction condition is satisfied. This study 

uses a sequence prediction challenge to evaluate this method. Specifically, the RNN is trained to 

predict the subsequent value in a succession of data points, e.g., the subsequent time series value 

or letter in a text sequence [12,13,14,15]. This illustrates the usefulness of using Banach's Fixed 

Point Theorem by contrasting the RNN's performance with and without the contraction condition 

check. The findings demonstrate that training becomes more consistent and prediction accuracy 

improves when the contraction check is included. 

In conclusion, this work offers a novel strategy for utilizing Banach's Fixed Point Theorem to 

enhance the stability and convergence of RNNs. We present a strong framework for stable RNN 

training by reformulating the RNN state update equations as a contraction mapping and ensuring 

the contraction condition is satisfied. This paper offers a fresh approach to tackling one of the 

main problems in RNN training by bridging the gap between mathematical theory and real-world 

machine learning applications. 

 

2. Research Gap 

There is a significant research gap in the quickly developing field of deep learning, specifically 

in the area of recurrent neural networks (RNNs) for time series forecasting, concerning the 

incorporation of mathematical concepts to improve model stability and convergence. RNNs are 

prone to stability problems during training, which can impair their performance and 

generalization capacity, despite their amazing ability to capture temporal dependencies and 

patterns in sequential data. The research gaps are explained below: 

1. The absence of systematic inquiry into the use of fixed-point theory in RNN training is 

one of the main research gaps. The fixed-point theory is very pertinent to the 

optimization process in deep learning models, as it offers a mathematical framework for 

examining the convergence of iterative algorithms. Nevertheless, few research has used 

fixed-point theory to enhance the stability and convergence characteristics of RNNs, in 

spite of its potential usefulness. This disparity emphasizes the necessity for deep learning 
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research that closes the knowledge gap between theoretical understanding and real-world 

implementations. 

2. Little research has been done expressly on contraction mapping as a means of 

maintaining stability during RNN training. Contraction mapping bounds the size of 

weight changes, providing an approachable method for guaranteeing convergence in 

iterative algorithms. Its use in the context of RNNs, however, is yet mostly unknown. 

Empirical investigations that methodically examine the efficacy of contraction mapping 

in enhancing the stability and convergence of RNN models—particularly in the dynamic 

and sequential data domains—are necessary to close this research gap. 

3. Comparing RNNs with and without contraction mapping, as well as contrasting them 

with conventional machine learning models, is another important area of unmet research 

need. Although significant research has been done on the use of regularization techniques 

in deep learning, like weight decay and dropout, the precise effect of contraction mapping 

on RNN performance is still not well understood. Furthermore, little research has been 

done to systematically compare the performance of RNNs with contraction mapping to 

more conventional machine learning models, like gradient boosting methods, random 

forests, and k-nearest neighbors, in the context of time series forecasting applications. 

4. The wider ramifications of incorporating mathematical concepts into deep learning 

techniques are another area of unexplored research. More thorough studies that clarify the 

theoretical foundations of deep learning algorithms and their practical ramifications are 

still needed, even though the value of mathematical rigor in machine learning research is 

becoming increasingly apparent. In order to investigate the synergy between theory and 

application in deep learning research, mathematicians, computer scientists, and domain 

specialists must collaborate together. 

In summary, future research has the chance to further our understanding of stability processes in 

deep learning models by addressing the research gap in the application of contraction mapping 

and fixed-point theory to RNN training. Researchers can help build more dependable and 

resilient AI systems by filling this gap, which will have an impact on a number of industries like 

finance, healthcare, and autonomous systems. 

 

3. Methodology 

The property of RNNs to handle sequential data, they have become essential in the field of 

machine learning. They are extensively employed in many different applications, including 

speech recognition, time series forecasting, and natural language processing [16, 17]. RNNs' 

primary characteristic is their capacity to keep track of a hidden state that contains knowledge 

about prior inputs, allowing them to gradually understand dependencies. However, there are a lot 

of difficulties in training RNNs, mostly because of problems with the stability and convergence 

of the hidden states [18, 19]. RNN's hidden state ℎ𝑡 at time step t is updated according to the 

equation (1). Despite the effectiveness of this approach, the iterative nature of state updates may 
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result in stability issues since tiny errors may compound over time and cause the network to 

diverge. 

The Fixed Point of Banach Theorem provides a means to guarantee the convergence of the 

hidden states, which presents a possible solution to this issue. According to the theory, any 

contraction mapping—a function that moves points closer together—has a unique fixed point in 

a complete metric space, and the function will converge to that fixed point iteratively. By 

proving that the state update equation of an RNN forms a contraction mapping, this theorem can 

be applied to the equation. Firstly, reformulation of the state update equation (1) as contraction 

mapping to apply Banach's Fixed Point Theorem to RNNs is required. Specifically, we need to 

show that there exists a constant k (0≤k<1) such that for any two hidden states, h1 and h2, the 

inequality- 

|𝑡(𝑡ℎℎ1 + 𝑡) − 𝑡(𝑡ℎℎ2 + 𝑡)| ≤ 𝑡|ℎ1 − ℎ2|                                                                        (2) 

The inequality should hold for every c = 𝑡𝑡𝑡𝑡 + 𝑡. This condition guarantees that for every 

two inputs, the distance between the mapping's outputs will decrease by a factor of 𝑘, resulting 

in a contraction of the mapping. 

Banach's theorem can be utilized to ensure that the hidden states will converge to a single fixed 

point once we have established that the RNN state update equation is a contraction mapping 

[21,22,23]. This entails creating an algorithm to validate the contraction condition using Python. 

The weight matrix Wh's spectral radius would be calculated by the method, which would then 

verify that it is less than 1. The biggest absolute value of the Wh eigenvalues is the spectral 

radius. Banach's theorem applies when the mapping is a contraction and the spectral radius is 

smaller than 1. It is suggested to change the training procedure to include a check for the 

contraction condition at each iteration to incorporate this method into the training of RNNs. The 

training method would modify the weights to make sure that the spectral radius of Wh stays 

below 1 if the criterion is not met. To manage the magnitude of the weights, this may include 

using regularization or weight normalization procedures. 

Using this approach, we train an RNN to predict the next value in a series by looking at the 

values that came before it. These jobs include text generation, in which the RNN forecasts the 

character that will appear next in a string, and time series forecasting, in which it projects values 

for the future based on historical data. We try to illustrate the usefulness of using Banach's Fixed 

Point Theorem by contrasting the performance of RNNs trained with and without the contraction 

condition check. This strategy should lead to more stable training because the hidden states will 

inevitably converge, and it should also increase performance because there is less chance of the 

network diverging or becoming stuck in unstable states. Furthermore, this approach offers a 

theoretical foundation for comprehending how RNNs behave during training, providing 

knowledge that can direct the creation of neural network topologies with greater resilience. 

To sum up, this issue description describes how to use Banach's Fixed Point Theorem to 

guarantee the convergence and stability of RNN hidden states. We want to address one of the 

main issues with training RNNs and enhance their performance on sequence prediction tasks by 
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proving that the state update equation forms a contraction mapping and using this understanding 

in the training procedure. 

 

4. Algorithm Development 

It is necessary to take a methodical approach to create an algorithm that uses Banach's Fixed 

Point Theorem to guarantee the stability and convergence of recurrent neural networks (RNNs). 

This entails determining if the state update equation of the RNN is a contraction mapping and 

adjusting the training procedure as necessary. This is a detailed account of how the algorithm 

was developed. 

● Reformulating the State Update Equation 

Equation (1) gives the state update equation of RNNs. It is necessary to demonstrate that this 

equation forms a contraction mapping in order to use Banach's Fixed Point Theorem. A function 

T is a contraction mapping if there exists a constant k such that for any two points h1 and h2- 

|𝑡(ℎ1) − 𝑡(ℎ1)| ≤ 𝑡|ℎ1 − ℎ2|                                                                                                  (3) 

𝑡(ℎ) = 𝑡ℎℎ + 𝑡𝑡𝑡𝑡 + 𝑡                                                                                                         

(4) 

● Checking the Contraction Condition 

Compute the spectral radius of Wh and make sure it is less than 1 in order to confirm the 

contraction requirement. The highest absolute eigenvalue of Wh is the mathematical definition of 

the spectral radius, or ρ(Wh). The state update mapping is a contraction if and only if the 

contraction criterion is met, i.e., ρ(Wh)<1. 

● Modifying the Training Process 

Next, we add a check for the contraction condition to the RNN training procedure. We change 

the weights to guarantee stability if the criterion is not satisfied. Techniques like weight 

regularization or normalization can be used for this. 

● Applying to a Sequence Prediction Task and Comparing Performance 

To compare the performance of the RNN with and without the contraction mapping check, we 

finally put the constructed algorithm to a sequence prediction job. We measure the stability and 

performance gain brought about by using Banach's Fixed Point Theorem in the training phase by 

calculating the mean squared error (MSE) on the test data. 

Finally, our algorithmic research illustrates a systematic way to use Banach's Fixed Point 

Theorem to guarantee the stability and convergence of RNNs. We present a solid foundation for 

training more dependable and efficient RNN models by reformulating the state update equation 

as a contraction mapping and incorporating the contraction condition check into the training 

procedure. 

 

5. Results 

a. Dataset 

The air passenger dataset [24], shown in Fig.2, which spans the period from January 1949 to 

December 1960, is a time series dataset made up of the monthly number of passengers carried by 
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international airlines. Table 1 shows the complete dataset description. This dataset was selected 

because it is useful for time series forecasting applications. Because of its seasonality and 

obvious upward tendency, the dataset is useful for assessing how well different predictive 

models—especially recurrent neural networks (RNNs)—perform. The dataset is broken into train 

and test sets, with 70% as a train and 30% as a test for the training of models. All the models are 

coded in Python 3.8, please refer to the Appendix for detailed code. 

 
Fig. 2 Time series plot of air passenger dataset. 

 

Table1: Dataset description 

Count Mean Standard 

Deviation 

Min Max 

144 280.2 119.96 104 622 

 

b. Comparison Between RNN with and without contraction mapping check 

Using the airline passenger dataset, we evaluated the effectiveness of RNNs with and without 

contraction mapping checks. To guarantee stability throughout training, the contraction mapping 

RNN was trained with a predetermined threshold. Our tests showed that, although the RNN 

without contraction converged more quickly during training, it had stability problems and tended 

to overfit or deviate from the data. However, the RNN with contraction mapping showed greater 

convergence and stability, which led to better generalization performance on untested data. 
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To keep the same level of comparison, the model architecture is kept the same with the same 

batch size and number of RNN layers both with contraction mapping and without contraction 

mapping. Table 2  gives a detailed analysis of the performance of models with metrics- R2, 

RMSE, and MAE. RNN with contraction mapping gives an RMSE of 0.070, MAE of 0.053, and 

R2 of 0.66, which is much better than the simple RNN model. Fig. 3 gives the validation and 

train loss for both RNNs with and without contraction mapping. This shows that both the models 

are converging in test as well as validation, while RNN with contraction mapping is taking more 

time to adjust the weights and learn the patterns in seen (train) as well as unseen (validation) 

datasets. Fig. 4 shows the line chart of actual vs predicted for (a) Simple RNN and (b) RNN with 

contraction mapping. It can be seen that the proposed model is much closer to the actual value as 

compared to simple RNN. 

 

Table 2: Results comparison between with and without contraction mapping 

Train/Test Simple RNN RNN with contraction mapping 

RMSE MAE R2 RMSE MAE R2 

Train 0.041 0.033 0.87 0.033 0.027 0.91 

Test 0.10 0.081 0.26 0.070 0.053 0.66 

 

 
(a) 
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(b) 

Fig. 3 Training and Test validation loss plot with respect to epochs for RNN (a) without 

contraction mapping (b) with contraction mapping 

 

 
(a) 
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(b) 

Fig. 4 Actual and predicted values plot for (a) RNN without contraction mapping and (b) RNN 

with contraction mapping. 

 

c.  Comparison Between Other Models and RNN with Contraction Mapping 

Furthermore, we evaluated the RNN's contraction mapping performance against that of several 

other well-known machine learning models, such as Random Forest, K-Nearest Neighbors 

(KNN), XGBoost, and Artificial Neural Network (ANN). On the test dataset, as shown in Fig. 5, 

our research demonstrated that the RNN with contraction mapping consistently outperformed 

these models in terms of R-squared (R2), mean absolute error (MAE), and root mean square error 

(RMSE). This implies that RNNs' prediction power is increased when they make use of the 

contraction mapping technique, particularly when it comes to identifying patterns and temporal 

relationships found in time series data. The proposed model has shown improved performance as 

shown in Table 3. 

 

Table 3. Comparative study of the proposed model and some benchmark models on test data. 

The best results are underlined. 

Models RMSE MAE R2 

Random Forest 0.16 0.12 -0.73 

KNN 0.20 0.17 -1.89 

XGBoost 0.19 0.15 -1.45 
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ANN 0.11 0.078 0.17 

RNN without 

contraction mapping 

0.10 0.081 0.26 

RNN with contraction 

mapping 

0.070 0.053 0.66 

 

 
Fig. 5 Comparison plot between RNN with contraction mapping and all other benchmark 

models. 

 

6. Conclusion 

In this work, we investigated the use of contraction mapping for time series forecasting tasks in 

recurrent neural networks (RNNs). Our research showed that the model's stability and 

performance are greatly enhanced when contraction mapping tests are included in RNN training. 

This is especially true when the model is used to capture intricate temporal correlations found in 

sequential data. The following points can be concluded through this study: 

a. It is found that adding contraction mapping tests improved RNN training processes' 

convergence and stability. More robust and broadly applicable models resulted from the 

regularization imposed by contraction mapping, which helped alleviate problems like 

weight divergence and overfitting. Our findings demonstrated the superiority of 

contraction mapping RNNs over both their unconstrained and conventional machine 
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learning models, highlighting the usefulness of this method in enhancing prediction 

accuracy and dependability. 

b. The RMSE of RNN with contraction mapping was found to be 0.07 while for  Simple 

RNN it was 0.1, which shows a 30% improvement in RMSE score, keeping the layers 

and other parameters the same. This shows that the proposed study gives an improvement 

over conventional RNNs. The proposed model also outperforms the already existing 

benchmarking models as shown in Fig. 5. All other models except ANN, failed to even 

register the basic trend while the proposed model gives superior results. 

c. The fixed point theorem's mathematical foundations serve as the basis for the use of 

contraction mapping in RNNs. Contraction mapping ensures the presence and uniqueness 

of fixed points by ensuring that the distance between subsequent weight iterations 

decreases during training, hence promoting convergence toward optimal solutions. This 

theoretical framework offers a logical method for resolving stability issues in deep 

learning models in addition to improving our comprehension of RNN dynamics. 

d. This study provides opportunities for future investigation and development in the fields 

of time series analysis and deep learning. Subsequent research endeavors may go into 

more intricate variations of contraction mapping, customized to certain RNN structures 

and datasets. Furthermore, investigating the incorporation of other mathematical concepts 

and optimization methods may improve RNNs' scalability and performance in practical 

settings. 

e. This work adds to the expanding corpus of research on deep learning model stability and 

convergence, especially as it relates to sequential data analysis. Through our 

demonstration of contraction mapping's usefulness in RNNs, we provide scholars and 

practitioners with important new perspectives on enhancing the robustness and 

performance of models. Our findings have applications in several fields where precise 

and trustworthy forecasts are critical, such as finance, healthcare, and climate modeling. 

In conclusion, this work emphasizes how important it is to use mathematical concepts like 

contraction mapping while creating and refining deep learning models. Through the integration 

of theoretical ideas and real-world applications, we open up new avenues for the development of 

more robust and effective algorithms that can handle intricate data analysis jobs across several 

fields. 
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APPENDIX 
 

A. Code for loading the dataset 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.metrics import mean_absolute_error, mean_squared_error 

from keras.models import Sequential 

from keras.layers import SimpleRNN, Dense 

# Load AirPassengers dataset 

data_url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv" 

df = pd.read_csv(data_url) 

 

B. Code for visualizing the dataset 

 

# Display first few rows of the dataset 

print("First few rows of the dataset:") 

print(df.head()) 

# Check for missing values 

print("\nMissing values in the dataset:") 

print(df.isnull().sum()) 

# Plot the original time series data 

plt.figure(figsize=(10, 6)) 

plt.plot( df['Passengers']) 

plt.title('AirPassengers Dataset - Monthly Passenger Count') 

plt.xlabel('Months') 

plt.ylabel('Passenger Count') 

plt.grid(False) 

plt.show() 

 

C. Code for processing data 

 

# Preprocess the data 

data = df['Passengers'].values.astype(float) 

data /= np.max(data)  # Normalize the data 

# Split the data into training and test sets 

train_size = int(len(data) * 0.7) 

test_size = len(data) - train_size 

train, test = data[0:train_size], data[train_size:len(data)] 
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# Prepare data for training 

def create_dataset(data, window_size): 

    X, Y = [], [] 

    for i in range(len(data) - window_size): 

        X.append(data[i:(i + window_size)]) 

        Y.append(data[i + window_size]) 

    return np.array(X), np.array(Y) 

window_size = 10 

X_train, y_train = create_dataset(train, window_size) 

X_test, y_test = create_dataset(test, window_size) 

 

D. Code for Simple RNN 

 

# Train Simple RNN using Keras 

def train_simple_rnn(X_train, y_train, X_test, y_test, num_epochs=100): 

    # Define the Simple RNN model 

    model = Sequential() 

    model.add(SimpleRNN(units=4, input_shape=(X_train.shape[1], X_train.shape[2]))) 

    model.add(Dense(1)) 

     

    # Compile the model 

    model.compile(optimizer='adam', loss='mean_squared_error') 

 

    # Train the model 

    history = model.fit(X_train, y_train, epochs=num_epochs, batch_size=1, 

validation_data=(X_test, y_test), verbose=2, shuffle=False) 

 

    return model, history 

X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1) 

X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1) 

 

simple_rnn_model, history_simple_rnn = train_simple_rnn(X_train, y_train, X_test, y_test) 

 

E. Code for RNN with contraction mapping 

# Define RNN with contraction mapping check 

import numpy as np 

from keras.models import Sequential 

from keras.layers import SimpleRNN, Dense 

class RNNWithContraction: 

    def __init__(self, units, contraction_threshold): 
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        self.units = units 

        self.model = None 

        self.contraction_threshold = contraction_threshold 

        self.history = {'loss': [], 'val_loss': []}  # Initialize history dictionary 

    def train_with_contraction(self, X_train, y_train, X_test, y_test, num_epochs=100): 

        # Define the RNN model 

        model = Sequential() 

        model.add(SimpleRNN(units=self.units, input_shape=(X_train.shape[1], 

X_train.shape[2]))) 

        model.add(Dense(1)) 

      

        # Compile the model 

        model.compile(optimizer='adam', loss='mean_squared_error') 

 

        # Train the model with contraction mapping check 

        for epoch in range(num_epochs): 

            for i in range(len(X_train)): 

                # Get current weights 

                weights_before = model.get_weights() 

 

                # Train for one batch 

                model.train_on_batch(X_train[i:i+1], y_train[i:i+1]) 

 

                # Get updated weights 

                weights_after = model.get_weights() 

 

                # Compute distance between weights 

                distance = sum(np.linalg.norm(w_before - w_after) for w_before, w_after in 

zip(weights_before, weights_after)) 

 

                # Check if contraction mapping condition is violated 

                if distance >= self.contraction_threshold: 

                    # Roll back to previous weights 

                    model.set_weights(weights_before) 

                    break  # Exit inner loop 

 

            # Evaluate model on validation data after each epoch 

            loss = model.evaluate(X_test, y_test, verbose=0) 

            print(f'Epoch {epoch + 1}/{num_epochs}, Validation Loss: {loss:.6f}') 
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            # Record loss values in history dictionary 

            self.history['loss'].append(loss) 

            self.history['val_loss'].append(loss) 

        self.model = model 

        return self.history 

# Train RNN with contraction mapping check 

rnn_with_check = RNNWithContraction(units=4, contraction_threshold=0.1) 

history_with_check = rnn_with_check.train_with_contraction(X_train.reshape(-1, window_size, 

1), y_train, X_test.reshape(-1, window_size, 1), y_test) 

 

F. Code for making predictions 

 

# Make predictions 

train_predict_with_check = rnn_with_check.model.predict(X_train.reshape(-1, window_size, 1)) 

test_predict_with_check = rnn_with_check.model.predict(X_test.reshape(-1, window_size, 1)) 

train_predict_simple_rnn = simple_rnn_model.predict(X_train) 

test_predict_simple_rnn = simple_rnn_model.predict(X_test) 

 

G. Code for Evaluation 

 

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score 

# Calculate evaluation metrics for RNN with contraction mapping check 

train_mae_with_check = mean_absolute_error(y_train, train_predict_with_check) 

train_rmse_with_check = np.sqrt(mean_squared_error(y_train, train_predict_with_check)) 

train_r2_with_check = r2_score(y_train, train_predict_with_check) 

test_mae_with_check = mean_absolute_error(y_test, test_predict_with_check) 

test_rmse_with_check = np.sqrt(mean_squared_error(y_test, test_predict_with_check)) 

test_r2_with_check = r2_score(y_test, test_predict_with_check) 

# Calculate evaluation metrics for Simple RNN 

train_mae_simple_rnn = mean_absolute_error(y_train, train_predict_simple_rnn) 

train_rmse_simple_rnn = np.sqrt(mean_squared_error(y_train, train_predict_simple_rnn)) 

train_r2_simple_rnn = r2_score(y_train, train_predict_simple_rnn) 

test_mae_simple_rnn = mean_absolute_error(y_test, test_predict_simple_rnn) 

test_rmse_simple_rnn = np.sqrt(mean_squared_error(y_test, test_predict_simple_rnn)) 

test_r2_simple_rnn = r2_score(y_test, test_predict_simple_rnn) 

# Print evaluation metrics 

print("RNN with Contraction Mapping Check") 

print(f"Train MAE: {train_mae_with_check:.6f}, Train RMSE: {train_rmse_with_check:.6f}, 

Train R2: {train_r2_with_check:.6f}") 
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print(f"Test MAE: {test_mae_with_check:.6f}, Test RMSE: {test_rmse_with_check:.6f}, Test 

R2: {test_r2_with_check:.6f}\n") 

print("Simple RNN") 

print(f"Train MAE: {train_mae_simple_rnn:.6f}, Train RMSE: {train_rmse_simple_rnn:.6f}, 

Train R2: {train_r2_simple_rnn:.6f}") 

print(f"Test MAE: {test_mae_simple_rnn:.6f}, Test RMSE: {test_rmse_simple_rnn:.6f}, Test 

R2: {test_r2_simple_rnn:.6f}") 

 

H. Code for visualization 

 

# Plot training loss for Simple RNN 

plt.figure(figsize=(10, 6)) 

plt.plot(history_simple_rnn.history['loss'], label='Training Loss') 

plt.plot(history_simple_rnn.history['val_loss'], label='Validation Loss') 

plt.title('Simple RNN - Training Loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

# Plot training loss for RNN with contraction mapping check 

plt.figure(figsize=(10, 6)) 

plt.plot(history_with_check.history['loss'], label='Training Loss') 

plt.plot(history_with_check.history['val_loss'], label='Validation Loss') 

plt.title('RNN with Contraction Mapping Check - Training Loss') 

plt.xlabel('Epochs') 

plt.ylabel('Loss') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

# Plot actual vs. predicted values for RNN with contraction mapping check 

plt.figure(figsize=(10, 6)) 

# Define the x-axis values for test data 

test_indices = np.arange(len(y_train), len(y_train) + len(y_test)) 

plt.plot(y_train,'b', label='Actual Train Data') 

plt.plot(test_indices, y_test,'g', label='Actual Test Data') 

# Define the x-axis values for test predictions starting from the end of the training data 

prediction_indices = np.arange(len(y_train), len(y_train) + len(test_predict_with_check)) 
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plt.plot(prediction_indices, test_predict_with_check,'m', label='Test Predictions with contraction 

mapping') 

plt.title('RNN with Contraction Mapping Check - Actual vs. Predicted') 

plt.xlabel('Time') 

plt.ylabel('Normalized Passenger Count') 

plt.legend() 

plt.grid(False) 

plt.show() 

 

# Plot actual vs. predicted values for RNN with contraction mapping check 

plt.figure(figsize=(10, 6)) 

# Define the x-axis values for test data 

test_indices = np.arange(len(y_train), len(y_train) + len(y_test)) 

plt.plot(y_train,'b', label='Actual Train Data') 

plt.plot(test_indices, y_test,'g', label='Actual Test Data') 

 

# Define the x-axis values for test predictions starting from the end of the training data 

prediction_indices = np.arange(len(y_train), len(y_train) + len(test_predict_with_check)) 

plt.plot(prediction_indices, test_predict_simple_rnn,'r', label='Test Predictions without 

contraction mapping') 

plt.title('RNN with Contraction Mapping Check - Actual vs. Predicted') 

plt.xlabel('Time') 

plt.ylabel('Normalized Passenger Count') 

plt.legend() 

plt.grid(False) 

plt.show() 

 

I. Code for benchmark models 

 

import numpy as np 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.neighbors import KNeighborsRegressor 

from lightgbm import LGBMRegressor 

import xgboost as xgb 

from keras.models import Sequential 

from keras.layers import Dense 
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# Random Forest 

rf = RandomForestRegressor(n_estimators=100, random_state=42) 

rf.fit(X_train, y_train) 

rf_predictions = rf.predict(X_test) 

# K-Nearest Neighbors 

knn = KNeighborsRegressor(n_neighbors=5) 

knn.fit(X_train, y_train) 

knn_predictions = knn.predict(X_test) 

# XGBoost 

xgb_model = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=100, 

random_state=42, verbosity=0) 

xgb_model.fit(X_train, y_train) 

xgb_predictions = xgb_model.predict(X_test) 

# Simple ANN 

ann_model = Sequential() 

ann_model.add(Dense(50, input_dim=X_train.shape[1], activation='relu')) 

ann_model.add(Dense(1)) 

ann_model.compile(optimizer='adam', loss='mean_squared_error') 

ann_model.fit(X_train, y_train, epochs=100, batch_size=32, verbose=0) 

ann_predictions = ann_model.predict(X_test).flatten() 

# Calculate evaluation metrics for additional models 

rf_mae = mean_absolute_error(y_test, rf_predictions) 

rf_rmse = np.sqrt(mean_squared_error(y_test, rf_predictions)) 

rf_r2 = r2_score(y_test, rf_predictions) 

knn_mae = mean_absolute_error(y_test, knn_predictions) 

knn_rmse = np.sqrt(mean_squared_error(y_test, knn_predictions)) 

knn_r2 = r2_score(y_test, knn_predictions) 

xgb_mae = mean_absolute_error(y_test, xgb_predictions) 

xgb_rmse = np.sqrt(mean_squared_error(y_test, xgb_predictions)) 

xgb_r2 = r2_score(y_test, xgb_predictions) 

ann_mae = mean_absolute_error(y_test, ann_predictions) 

ann_rmse = np.sqrt(mean_squared_error(y_test, ann_predictions)) 

ann_r2 = r2_score(y_test, ann_predictions) 

print("Random Forest") 

print(f"Test MAE: {rf_mae:.6f}, Test RMSE: {rf_rmse:.6f}, Test R2: {rf_r2:.6f}\n") 

print("K-Nearest Neighbors") 

print(f"Test MAE: {knn_mae:.6f}, Test RMSE: {knn_rmse:.6f}, Test R2: {knn_r2:.6f}\n") 

print("XGBoost") 

print(f"Test MAE: {xgb_mae:.6f}, Test RMSE: {xgb_rmse:.6f}, Test R2: {xgb_r2:.6f}\n") 

print("Artificial Neural Network") 
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print(f"Test MAE: {ann_mae:.6f}, Test RMSE: {ann_rmse:.6f}, Test R2: {ann_r2:.6f}\n") 

 

# Plot actual vs. predicted values for the best performing model 

plt.figure(figsize=(10, 6)) 

# Define the x-axis values for test data 

test_indices = np.arange(len(y_train), len(y_train) + len(y_test)) 

plt.plot(np.arange(len(y_train)), y_train,'b', label='Actual Train Data') 

plt.plot(test_indices, y_test,'g', label='Actual Test Data') 

plt.plot(test_indices, rf_predictions,'r--', label='RF Predictions') 

plt.plot(test_indices, knn_predictions,'y--', label='KNN Predictions') 

plt.plot(test_indices, xgb_predictions,'--', label='XGBoost Predictions') 

plt.plot(test_indices, ann_predictions,'c--', label='ANN Predictions') 

plt.plot(prediction_indices, test_predict_with_check,'m.-', label='Test Predictions with 

contraction mapping') 

plt.title('Baseline Models - Actual vs. Predicted') 

plt.xlabel('Time') 

plt.ylabel('Normalized Passenger Count') 

plt.legend() 

plt.grid(False) 

plt.show() 
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