
Application of Banach's Fixed Point Theorem in Machine Learning for

Recurrent Neural Network Architecture

VINITA SUDHIR, DR MANISH KUMAR, DR REETA SHUKLA

BHARTI VISHWAVIDYALAYA, BALOD ROAD, CHANDKHURI,DURG

CHHATTISGARH, INDIA

PIN 491001

Abstract

To improve the stability and convergence of recurrent neural networks (RNNs) for time series

forecasting applications, this research explores the use of fixed-point theory. Our goal is to

enhance the generalization performance of RNN models and reduce stability problems by

including a contraction mapping check into the training process. We assess the performance of

RNNs with and without contraction mapping versus conventional machine learning models using

the airline passenger dataset as a case study. Our tests demonstrate how contraction mapping can

improve model stability and lead to higher predicted accuracy. The findings support a

comprehensive strategy that combines theoretical understanding with empirical study and

highlights the significance of mathematical concepts in deep learning research.

Keywords: Fixed point theorem, recurrent neural network, contraction mapping, machine

learning.

1. Introduction

In machine learning, recurrent neural networks, or RNNs (see Fig. 1), have become

indispensable, especially for tasks involving sequential input, such as speech recognition, time

series prediction, and language modeling [1]. Because RNNs may retain a recollection of past

inputs, unlike typical neural networks, they are ideally suited for processing sequences in which

context is crucial. As training goes on, maintaining the stability and convergence of the hidden

states is a major problem for RNNs [2]. The network may become unstable if the hidden states

do not converge, resulting in subpar performance and challenging training.

To overcome the shortcomings of more conventional neural networks, including Feedforward

Neural Networks (FNNs), recurrent neural networks (RNNs) were developed to process

sequential input [3]. Without taking into account the context or order of previous inputs, FNN

processes each input independently through a number of hidden layers. As a result, it is unable to

grasp the dependencies between inputs and handle sequential data well [4,5,6]. FNNs are

therefore not well adapted for sequential processing tasks like time series analysis, speech

recognition, machine translation, language modeling, and many other applications that call for

sequential processing [7]. RNN enters the scene to overcome the drawbacks of conventional

neural networks.

Volume 94, No. 1, 2025

Page 206

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

By adding a recurrent link that allows data to move from one time step to the next, RNN

overcomes these constraints. The network can gather information from earlier steps and apply it

to the current step, allowing the model to learn temporal dependencies and handle input of

variable length [8,9,10]. This recurrent connection allows RNNs to maintain internal memory,

where the output of each step is fed back as an input to the next step.

By using Banach's Fixed Point Theorem, a key finding in fixed point theory, this work seeks to

address this difficulty [11]. A contraction mapping over an entire metric space has a unique fixed

point under certain conditions, and Banach's theorem ensures that iterative applications of the

mapping will converge to this fixed point. Banach's theorem allows us to guarantee that the

hidden states converge to a stable point by considering the state update equations of an RNN as a

contraction mapping.

Fig. 1 Recurrent Neural Network architecture diagram

Volume 94, No. 1, 2025

Page 207

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

The first step in applying Banach's Fixed Point Theorem to RNNs is to rewrite the state update

equation. Typically, an RNN's hidden state ℎ𝑡 at time step t is updated according to the equation:

ℎ𝑡 = 𝑡(𝑡ℎℎ𝑡−1 + 𝑡𝑡𝑡𝑡 + 𝑡) (1)

Where 𝑡ℎ,𝑡𝑡 are weight matrices, b is the bias vector and 𝜎 is a non-linear activation function.

It is ensured that this update equation produces a contraction mapping, i.e., for any two hidden

states, h1 and h2, the distance between their images under the mapping is smaller than k times the

distance between h1 and h2. To do this, we must choose a constant k, such that 0≤k<1.

Banach's theorem can be utilized to ensure that the concealed states will converge once it has

been established that the state update equation is a contraction mapping. This entails creating an

algorithm based on Python to confirm the contraction condition and including it in the RNN's

training procedure. We can increase the stability of the hidden states and thus improve training

and inference performance by making sure that the contraction condition is satisfied. This study

uses a sequence prediction challenge to evaluate this method. Specifically, the RNN is trained to

predict the subsequent value in a succession of data points, e.g., the subsequent time series value

or letter in a text sequence [12,13,14,15]. This illustrates the usefulness of using Banach's Fixed

Point Theorem by contrasting the RNN's performance with and without the contraction condition

check. The findings demonstrate that training becomes more consistent and prediction accuracy

improves when the contraction check is included.

In conclusion, this work offers a novel strategy for utilizing Banach's Fixed Point Theorem to

enhance the stability and convergence of RNNs. We present a strong framework for stable RNN

training by reformulating the RNN state update equations as a contraction mapping and ensuring

the contraction condition is satisfied. This paper offers a fresh approach to tackling one of the

main problems in RNN training by bridging the gap between mathematical theory and real-world

machine learning applications.

2. Research Gap

There is a significant research gap in the quickly developing field of deep learning, specifically

in the area of recurrent neural networks (RNNs) for time series forecasting, concerning the

incorporation of mathematical concepts to improve model stability and convergence. RNNs are

prone to stability problems during training, which can impair their performance and

generalization capacity, despite their amazing ability to capture temporal dependencies and

patterns in sequential data. The research gaps are explained below:

1. The absence of systematic inquiry into the use of fixed-point theory in RNN training is

one of the main research gaps. The fixed-point theory is very pertinent to the

optimization process in deep learning models, as it offers a mathematical framework for

examining the convergence of iterative algorithms. Nevertheless, few research has used

fixed-point theory to enhance the stability and convergence characteristics of RNNs, in

spite of its potential usefulness. This disparity emphasizes the necessity for deep learning

Volume 94, No. 1, 2025

Page 208

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

research that closes the knowledge gap between theoretical understanding and real-world

implementations.

2. Little research has been done expressly on contraction mapping as a means of

maintaining stability during RNN training. Contraction mapping bounds the size of

weight changes, providing an approachable method for guaranteeing convergence in

iterative algorithms. Its use in the context of RNNs, however, is yet mostly unknown.

Empirical investigations that methodically examine the efficacy of contraction mapping

in enhancing the stability and convergence of RNN models—particularly in the dynamic

and sequential data domains—are necessary to close this research gap.

3. Comparing RNNs with and without contraction mapping, as well as contrasting them

with conventional machine learning models, is another important area of unmet research

need. Although significant research has been done on the use of regularization techniques

in deep learning, like weight decay and dropout, the precise effect of contraction mapping

on RNN performance is still not well understood. Furthermore, little research has been

done to systematically compare the performance of RNNs with contraction mapping to

more conventional machine learning models, like gradient boosting methods, random

forests, and k-nearest neighbors, in the context of time series forecasting applications.

4. The wider ramifications of incorporating mathematical concepts into deep learning

techniques are another area of unexplored research. More thorough studies that clarify the

theoretical foundations of deep learning algorithms and their practical ramifications are

still needed, even though the value of mathematical rigor in machine learning research is

becoming increasingly apparent. In order to investigate the synergy between theory and

application in deep learning research, mathematicians, computer scientists, and domain

specialists must collaborate together.

In summary, future research has the chance to further our understanding of stability processes in

deep learning models by addressing the research gap in the application of contraction mapping

and fixed-point theory to RNN training. Researchers can help build more dependable and

resilient AI systems by filling this gap, which will have an impact on a number of industries like

finance, healthcare, and autonomous systems.

3. Methodology

The property of RNNs to handle sequential data, they have become essential in the field of

machine learning. They are extensively employed in many different applications, including

speech recognition, time series forecasting, and natural language processing [16, 17]. RNNs'

primary characteristic is their capacity to keep track of a hidden state that contains knowledge

about prior inputs, allowing them to gradually understand dependencies. However, there are a lot

of difficulties in training RNNs, mostly because of problems with the stability and convergence

of the hidden states [18, 19]. RNN's hidden state ℎ𝑡 at time step t is updated according to the

equation (1). Despite the effectiveness of this approach, the iterative nature of state updates may

Volume 94, No. 1, 2025

Page 209

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

result in stability issues since tiny errors may compound over time and cause the network to

diverge.

The Fixed Point of Banach Theorem provides a means to guarantee the convergence of the

hidden states, which presents a possible solution to this issue. According to the theory, any

contraction mapping—a function that moves points closer together—has a unique fixed point in

a complete metric space, and the function will converge to that fixed point iteratively. By

proving that the state update equation of an RNN forms a contraction mapping, this theorem can

be applied to the equation. Firstly, reformulation of the state update equation (1) as contraction

mapping to apply Banach's Fixed Point Theorem to RNNs is required. Specifically, we need to

show that there exists a constant k (0≤k<1) such that for any two hidden states, h1 and h2, the

inequality-

|𝑡(𝑡ℎℎ1 + 𝑡) − 𝑡(𝑡ℎℎ2 + 𝑡)| ≤ 𝑡|ℎ1 − ℎ2| (2)

The inequality should hold for every c = 𝑡𝑡𝑡𝑡 + 𝑡. This condition guarantees that for every

two inputs, the distance between the mapping's outputs will decrease by a factor of 𝑘, resulting

in a contraction of the mapping.

Banach's theorem can be utilized to ensure that the hidden states will converge to a single fixed

point once we have established that the RNN state update equation is a contraction mapping

[21,22,23]. This entails creating an algorithm to validate the contraction condition using Python.

The weight matrix Wh's spectral radius would be calculated by the method, which would then

verify that it is less than 1. The biggest absolute value of the Wh eigenvalues is the spectral

radius. Banach's theorem applies when the mapping is a contraction and the spectral radius is

smaller than 1. It is suggested to change the training procedure to include a check for the

contraction condition at each iteration to incorporate this method into the training of RNNs. The

training method would modify the weights to make sure that the spectral radius of Wh stays

below 1 if the criterion is not met. To manage the magnitude of the weights, this may include

using regularization or weight normalization procedures.

Using this approach, we train an RNN to predict the next value in a series by looking at the

values that came before it. These jobs include text generation, in which the RNN forecasts the

character that will appear next in a string, and time series forecasting, in which it projects values

for the future based on historical data. We try to illustrate the usefulness of using Banach's Fixed

Point Theorem by contrasting the performance of RNNs trained with and without the contraction

condition check. This strategy should lead to more stable training because the hidden states will

inevitably converge, and it should also increase performance because there is less chance of the

network diverging or becoming stuck in unstable states. Furthermore, this approach offers a

theoretical foundation for comprehending how RNNs behave during training, providing

knowledge that can direct the creation of neural network topologies with greater resilience.

To sum up, this issue description describes how to use Banach's Fixed Point Theorem to

guarantee the convergence and stability of RNN hidden states. We want to address one of the

main issues with training RNNs and enhance their performance on sequence prediction tasks by

Volume 94, No. 1, 2025

Page 210

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

proving that the state update equation forms a contraction mapping and using this understanding

in the training procedure.

4. Algorithm Development

It is necessary to take a methodical approach to create an algorithm that uses Banach's Fixed

Point Theorem to guarantee the stability and convergence of recurrent neural networks (RNNs).

This entails determining if the state update equation of the RNN is a contraction mapping and

adjusting the training procedure as necessary. This is a detailed account of how the algorithm

was developed.

● Reformulating the State Update Equation

Equation (1) gives the state update equation of RNNs. It is necessary to demonstrate that this

equation forms a contraction mapping in order to use Banach's Fixed Point Theorem. A function

T is a contraction mapping if there exists a constant k such that for any two points h1 and h2-

|𝑡(ℎ1) − 𝑡(ℎ1)| ≤ 𝑡|ℎ1 − ℎ2| (3)

𝑡(ℎ) = 𝑡ℎℎ + 𝑡𝑡𝑡𝑡 + 𝑡

(4)

● Checking the Contraction Condition

Compute the spectral radius of Wh and make sure it is less than 1 in order to confirm the

contraction requirement. The highest absolute eigenvalue of Wh is the mathematical definition of

the spectral radius, or ρ(Wh). The state update mapping is a contraction if and only if the

contraction criterion is met, i.e., ρ(Wh)<1.

● Modifying the Training Process

Next, we add a check for the contraction condition to the RNN training procedure. We change

the weights to guarantee stability if the criterion is not satisfied. Techniques like weight

regularization or normalization can be used for this.

● Applying to a Sequence Prediction Task and Comparing Performance

To compare the performance of the RNN with and without the contraction mapping check, we

finally put the constructed algorithm to a sequence prediction job. We measure the stability and

performance gain brought about by using Banach's Fixed Point Theorem in the training phase by

calculating the mean squared error (MSE) on the test data.

Finally, our algorithmic research illustrates a systematic way to use Banach's Fixed Point

Theorem to guarantee the stability and convergence of RNNs. We present a solid foundation for

training more dependable and efficient RNN models by reformulating the state update equation

as a contraction mapping and incorporating the contraction condition check into the training

procedure.

5. Results

a. Dataset

The air passenger dataset [24], shown in Fig.2, which spans the period from January 1949 to

December 1960, is a time series dataset made up of the monthly number of passengers carried by

Volume 94, No. 1, 2025

Page 211

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

international airlines. Table 1 shows the complete dataset description. This dataset was selected

because it is useful for time series forecasting applications. Because of its seasonality and

obvious upward tendency, the dataset is useful for assessing how well different predictive

models—especially recurrent neural networks (RNNs)—perform. The dataset is broken into train

and test sets, with 70% as a train and 30% as a test for the training of models. All the models are

coded in Python 3.8, please refer to the Appendix for detailed code.

Fig. 2 Time series plot of air passenger dataset.

Table1: Dataset description

Count Mean Standard

Deviation

Min Max

144 280.2 119.96 104 622

b. Comparison Between RNN with and without contraction mapping check

Using the airline passenger dataset, we evaluated the effectiveness of RNNs with and without

contraction mapping checks. To guarantee stability throughout training, the contraction mapping

RNN was trained with a predetermined threshold. Our tests showed that, although the RNN

without contraction converged more quickly during training, it had stability problems and tended

to overfit or deviate from the data. However, the RNN with contraction mapping showed greater

convergence and stability, which led to better generalization performance on untested data.

Volume 94, No. 1, 2025

Page 212

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

To keep the same level of comparison, the model architecture is kept the same with the same

batch size and number of RNN layers both with contraction mapping and without contraction

mapping. Table 2 gives a detailed analysis of the performance of models with metrics- R2,

RMSE, and MAE. RNN with contraction mapping gives an RMSE of 0.070, MAE of 0.053, and

R2 of 0.66, which is much better than the simple RNN model. Fig. 3 gives the validation and

train loss for both RNNs with and without contraction mapping. This shows that both the models

are converging in test as well as validation, while RNN with contraction mapping is taking more

time to adjust the weights and learn the patterns in seen (train) as well as unseen (validation)

datasets. Fig. 4 shows the line chart of actual vs predicted for (a) Simple RNN and (b) RNN with

contraction mapping. It can be seen that the proposed model is much closer to the actual value as

compared to simple RNN.

Table 2: Results comparison between with and without contraction mapping

Train/Test Simple RNN RNN with contraction mapping

RMSE MAE R2 RMSE MAE R2

Train 0.041 0.033 0.87 0.033 0.027 0.91

Test 0.10 0.081 0.26 0.070 0.053 0.66

(a)

Volume 94, No. 1, 2025

Page 213

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

(b)

Fig. 3 Training and Test validation loss plot with respect to epochs for RNN (a) without

contraction mapping (b) with contraction mapping

(a)

Volume 94, No. 1, 2025

Page 214

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

(b)

Fig. 4 Actual and predicted values plot for (a) RNN without contraction mapping and (b) RNN

with contraction mapping.

c. Comparison Between Other Models and RNN with Contraction Mapping

Furthermore, we evaluated the RNN's contraction mapping performance against that of several

other well-known machine learning models, such as Random Forest, K-Nearest Neighbors

(KNN), XGBoost, and Artificial Neural Network (ANN). On the test dataset, as shown in Fig. 5,

our research demonstrated that the RNN with contraction mapping consistently outperformed

these models in terms of R-squared (R2), mean absolute error (MAE), and root mean square error

(RMSE). This implies that RNNs' prediction power is increased when they make use of the

contraction mapping technique, particularly when it comes to identifying patterns and temporal

relationships found in time series data. The proposed model has shown improved performance as

shown in Table 3.

Table 3. Comparative study of the proposed model and some benchmark models on test data.

The best results are underlined.

Models RMSE MAE R2

Random Forest 0.16 0.12 -0.73

KNN 0.20 0.17 -1.89

XGBoost 0.19 0.15 -1.45

Volume 94, No. 1, 2025

Page 215

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

ANN 0.11 0.078 0.17

RNN without

contraction mapping

0.10 0.081 0.26

RNN with contraction

mapping

0.070 0.053 0.66

Fig. 5 Comparison plot between RNN with contraction mapping and all other benchmark

models.

6. Conclusion

In this work, we investigated the use of contraction mapping for time series forecasting tasks in

recurrent neural networks (RNNs). Our research showed that the model's stability and

performance are greatly enhanced when contraction mapping tests are included in RNN training.

This is especially true when the model is used to capture intricate temporal correlations found in

sequential data. The following points can be concluded through this study:

a. It is found that adding contraction mapping tests improved RNN training processes'

convergence and stability. More robust and broadly applicable models resulted from the

regularization imposed by contraction mapping, which helped alleviate problems like

weight divergence and overfitting. Our findings demonstrated the superiority of

contraction mapping RNNs over both their unconstrained and conventional machine

Volume 94, No. 1, 2025

Page 216

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

learning models, highlighting the usefulness of this method in enhancing prediction

accuracy and dependability.

b. The RMSE of RNN with contraction mapping was found to be 0.07 while for Simple

RNN it was 0.1, which shows a 30% improvement in RMSE score, keeping the layers

and other parameters the same. This shows that the proposed study gives an improvement

over conventional RNNs. The proposed model also outperforms the already existing

benchmarking models as shown in Fig. 5. All other models except ANN, failed to even

register the basic trend while the proposed model gives superior results.

c. The fixed point theorem's mathematical foundations serve as the basis for the use of

contraction mapping in RNNs. Contraction mapping ensures the presence and uniqueness

of fixed points by ensuring that the distance between subsequent weight iterations

decreases during training, hence promoting convergence toward optimal solutions. This

theoretical framework offers a logical method for resolving stability issues in deep

learning models in addition to improving our comprehension of RNN dynamics.

d. This study provides opportunities for future investigation and development in the fields

of time series analysis and deep learning. Subsequent research endeavors may go into

more intricate variations of contraction mapping, customized to certain RNN structures

and datasets. Furthermore, investigating the incorporation of other mathematical concepts

and optimization methods may improve RNNs' scalability and performance in practical

settings.

e. This work adds to the expanding corpus of research on deep learning model stability and

convergence, especially as it relates to sequential data analysis. Through our

demonstration of contraction mapping's usefulness in RNNs, we provide scholars and

practitioners with important new perspectives on enhancing the robustness and

performance of models. Our findings have applications in several fields where precise

and trustworthy forecasts are critical, such as finance, healthcare, and climate modeling.

In conclusion, this work emphasizes how important it is to use mathematical concepts like

contraction mapping while creating and refining deep learning models. Through the integration

of theoretical ideas and real-world applications, we open up new avenues for the development of

more robust and effective algorithms that can handle intricate data analysis jobs across several

fields.

7. References
1. Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural networks for

sequence learning. arXiv preprint arXiv:1506.00019.

2. Ribeiro, A. H., Tiels, K., Aguirre, L. A., & Schön, T. (2020, June). Beyond exploding and vanishing

gradients: analysing RNN training using attractors and smoothness. In International conference on artificial

intelligence and statistics (pp. 2370-2380). PMLR.

3. Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. (2017). Recent advances in recurrent neural

networks. arXiv preprint arXiv:1801.01078.

4. Tan, J. C. M., Cao, Q., & Quek, C. (2024). FE-RNN: A fuzzy embedded recurrent neural network for

improving interpretability of underlying neural network. Information Sciences, 120276.

Volume 94, No. 1, 2025

Page 217

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

5. Moloko, L. E., Bokov, P. M., Wu, X., & Ivanov, K. N. (2023). Prediction and uncertainty quantification of

SAFARI-1 axial neutron flux profiles with neural networks. Annals of Nuclear Energy, 188, 109813.

6. Mulvey, D., Foh, C. H., Imran, M. A., & Tafazolli, R. (2024). Use of Parallel Explanatory Models to

Enhance Transparency of Neural Network Configurations for Cell Degradation Detection. IEEE

Transactions on Neural Networks and Learning Systems.

7. Li, Y., Gault, R., & McGinnity, T. M. (2021). Probabilistic, recurrent, fuzzy neural network for processing

noisy time-series data. IEEE transactions on neural networks and learning systems, 33(9), 4851-4860.

8. Jiang, B., Yang, H., Wang, Y., Liu, Y., Geng, H., Zeng, H., & Ding, J. (2024). Dynamic temporal

dependency model for multiple steps ahead short-term load forecasting of power system. IEEE

Transactions on Industry Applications.

9. Zucchet, N., Meier, R., Schug, S., Mujika, A., & Sacramento, J. (2023). Online learning of long-range

dependencies. Advances in Neural Information Processing Systems, 36, 10477-10493.

10. Sriramulu, A., Fourrier, N., & Bergmeir, C. (2023). Adaptive dependency learning graph neural networks.

Information Sciences, 625, 700-714.

11. Nwaigwe, C., & Benedict, D. N. (2023). Generalized Banach fixed-point theorem and numerical

discretization for nonlinear Volterra–Fredholm equations. Journal of Computational and Applied

Mathematics, 425, 115019.

12. Zhang, X., Chau, T. K., Chow, Y. H., Fernando, T., & Iu, H. H. C. (2023). A novel sequence to sequence

data modelling based CNN-LSTM algorithm for three years ahead monthly peak load forecasting. IEEE

Transactions on Power Systems, 39(1), 1932-1947.

13. Ma, L., Zhao, Y., Wang, B., & Shen, F. (2023). A Multi-Step Sequence-to-Sequence Model with Attention

LSTM Neural Networks for Industrial Soft Sensor Application. IEEE Sensors Journal.

14. Chen, Z., Ma, M., Li, T., Wang, H., & Li, C. (2023). Long sequence time-series forecasting with deep

learning: A survey. Information Fusion, 97, 101819.

15. Zhou, H., Li, J., Zhang, S., Zhang, S., Yan, M., & Xiong, H. (2023). Expanding the prediction capacity in

long sequence time-series forecasting. Artificial Intelligence, 318, 103886.

16. Das, S., Tariq, A., Santos, T., Kantareddy, S. S., & Banerjee, I. (2023). Recurrent neural networks (RNNs):

architectures, training tricks, and introduction to influential research. Machine Learning for Brain

Disorders, 117-138.

17. Taye, M. M. (2023). Understanding of machine learning with deep learning: architectures, workflow,

applications and future directions. Computers, 12(5), 91.

18. Kasongo, S. M. (2023). A deep learning technique for intrusion detection system using a Recurrent Neural

Networks based framework. Computer Communications, 199, 113-125.

19. Shan, F., He, X., Armaghani, D. J., & Sheng, D. (2024). Effects of data smoothing and recurrent neural

network (RNN) algorithms for real-time forecasting of tunnel boring machine (TBM) performance. Journal

of Rock Mechanics and Geotechnical Engineering, 16(5), 1538-1551.

20. Sunthrayuth, P., Kankam, K., Promkam, R., & Srisawat, S. (2024). Novel inertial methods for fixed point

problems in reflexive Banach spaces with applications. Rendiconti del Circolo Matematico di Palermo

Series 2, 73(3), 1177-1215.

21. Fernández-Duque, D., Shafer, P., Towsner, H., & Yokoyama, K. (2023). Metric fixed point theory and

partial impredicativity. Philosophical Transactions of the Royal Society A, 381(2248), 20220012.

22. Kashlak, A. B., Loliencar, P., & Heo, G. (2023). Topological Hidden Markov Models. Journal of Machine

Learning Research, 24(340), 1-49.

23. Fan, F., Yi, B., Rye, D., Shi, G., & Manchester, I. R. (2024). Learning Stable Koopman Embeddings for

Identification and Control. arXiv preprint arXiv:2401.08153.

24. Dataset- Air Passengers

https://github.com/jbrownlee/Datasets/blob/master/airline-passengers.csv

Volume 94, No. 1, 2025

Page 218

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

APPENDIX

A. Code for loading the dataset

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import mean_absolute_error, mean_squared_error

from keras.models import Sequential

from keras.layers import SimpleRNN, Dense

Load AirPassengers dataset

data_url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-passengers.csv"

df = pd.read_csv(data_url)

B. Code for visualizing the dataset

Display first few rows of the dataset

print("First few rows of the dataset:")

print(df.head())

Check for missing values

print("\nMissing values in the dataset:")

print(df.isnull().sum())

Plot the original time series data

plt.figure(figsize=(10, 6))

plt.plot(df['Passengers'])

plt.title('AirPassengers Dataset - Monthly Passenger Count')

plt.xlabel('Months')

plt.ylabel('Passenger Count')

plt.grid(False)

plt.show()

C. Code for processing data

Preprocess the data

data = df['Passengers'].values.astype(float)

data /= np.max(data) # Normalize the data

Split the data into training and test sets

train_size = int(len(data) * 0.7)

test_size = len(data) - train_size

train, test = data[0:train_size], data[train_size:len(data)]

Volume 94, No. 1, 2025

Page 219

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

Prepare data for training

def create_dataset(data, window_size):

 X, Y = [], []

 for i in range(len(data) - window_size):

 X.append(data[i:(i + window_size)])

 Y.append(data[i + window_size])

 return np.array(X), np.array(Y)

window_size = 10

X_train, y_train = create_dataset(train, window_size)

X_test, y_test = create_dataset(test, window_size)

D. Code for Simple RNN

Train Simple RNN using Keras

def train_simple_rnn(X_train, y_train, X_test, y_test, num_epochs=100):

 # Define the Simple RNN model

 model = Sequential()

 model.add(SimpleRNN(units=4, input_shape=(X_train.shape[1], X_train.shape[2])))

 model.add(Dense(1))

 # Compile the model

 model.compile(optimizer='adam', loss='mean_squared_error')

 # Train the model

 history = model.fit(X_train, y_train, epochs=num_epochs, batch_size=1,

validation_data=(X_test, y_test), verbose=2, shuffle=False)

 return model, history

X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)

X_test = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)

simple_rnn_model, history_simple_rnn = train_simple_rnn(X_train, y_train, X_test, y_test)

E. Code for RNN with contraction mapping

Define RNN with contraction mapping check

import numpy as np

from keras.models import Sequential

from keras.layers import SimpleRNN, Dense

class RNNWithContraction:

 def __init__(self, units, contraction_threshold):

Volume 94, No. 1, 2025

Page 220

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

 self.units = units

 self.model = None

 self.contraction_threshold = contraction_threshold

 self.history = {'loss': [], 'val_loss': []} # Initialize history dictionary

 def train_with_contraction(self, X_train, y_train, X_test, y_test, num_epochs=100):

 # Define the RNN model

 model = Sequential()

 model.add(SimpleRNN(units=self.units, input_shape=(X_train.shape[1],

X_train.shape[2])))

 model.add(Dense(1))

 # Compile the model

 model.compile(optimizer='adam', loss='mean_squared_error')

 # Train the model with contraction mapping check

 for epoch in range(num_epochs):

 for i in range(len(X_train)):

 # Get current weights

 weights_before = model.get_weights()

 # Train for one batch

 model.train_on_batch(X_train[i:i+1], y_train[i:i+1])

 # Get updated weights

 weights_after = model.get_weights()

 # Compute distance between weights

 distance = sum(np.linalg.norm(w_before - w_after) for w_before, w_after in

zip(weights_before, weights_after))

 # Check if contraction mapping condition is violated

 if distance >= self.contraction_threshold:

 # Roll back to previous weights

 model.set_weights(weights_before)

 break # Exit inner loop

 # Evaluate model on validation data after each epoch

 loss = model.evaluate(X_test, y_test, verbose=0)

 print(f'Epoch {epoch + 1}/{num_epochs}, Validation Loss: {loss:.6f}')

Volume 94, No. 1, 2025

Page 221

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

 # Record loss values in history dictionary

 self.history['loss'].append(loss)

 self.history['val_loss'].append(loss)

 self.model = model

 return self.history

Train RNN with contraction mapping check

rnn_with_check = RNNWithContraction(units=4, contraction_threshold=0.1)

history_with_check = rnn_with_check.train_with_contraction(X_train.reshape(-1, window_size,

1), y_train, X_test.reshape(-1, window_size, 1), y_test)

F. Code for making predictions

Make predictions

train_predict_with_check = rnn_with_check.model.predict(X_train.reshape(-1, window_size, 1))

test_predict_with_check = rnn_with_check.model.predict(X_test.reshape(-1, window_size, 1))

train_predict_simple_rnn = simple_rnn_model.predict(X_train)

test_predict_simple_rnn = simple_rnn_model.predict(X_test)

G. Code for Evaluation

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

Calculate evaluation metrics for RNN with contraction mapping check

train_mae_with_check = mean_absolute_error(y_train, train_predict_with_check)

train_rmse_with_check = np.sqrt(mean_squared_error(y_train, train_predict_with_check))

train_r2_with_check = r2_score(y_train, train_predict_with_check)

test_mae_with_check = mean_absolute_error(y_test, test_predict_with_check)

test_rmse_with_check = np.sqrt(mean_squared_error(y_test, test_predict_with_check))

test_r2_with_check = r2_score(y_test, test_predict_with_check)

Calculate evaluation metrics for Simple RNN

train_mae_simple_rnn = mean_absolute_error(y_train, train_predict_simple_rnn)

train_rmse_simple_rnn = np.sqrt(mean_squared_error(y_train, train_predict_simple_rnn))

train_r2_simple_rnn = r2_score(y_train, train_predict_simple_rnn)

test_mae_simple_rnn = mean_absolute_error(y_test, test_predict_simple_rnn)

test_rmse_simple_rnn = np.sqrt(mean_squared_error(y_test, test_predict_simple_rnn))

test_r2_simple_rnn = r2_score(y_test, test_predict_simple_rnn)

Print evaluation metrics

print("RNN with Contraction Mapping Check")

print(f"Train MAE: {train_mae_with_check:.6f}, Train RMSE: {train_rmse_with_check:.6f},

Train R2: {train_r2_with_check:.6f}")

Volume 94, No. 1, 2025

Page 222

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

print(f"Test MAE: {test_mae_with_check:.6f}, Test RMSE: {test_rmse_with_check:.6f}, Test

R2: {test_r2_with_check:.6f}\n")

print("Simple RNN")

print(f"Train MAE: {train_mae_simple_rnn:.6f}, Train RMSE: {train_rmse_simple_rnn:.6f},

Train R2: {train_r2_simple_rnn:.6f}")

print(f"Test MAE: {test_mae_simple_rnn:.6f}, Test RMSE: {test_rmse_simple_rnn:.6f}, Test

R2: {test_r2_simple_rnn:.6f}")

H. Code for visualization

Plot training loss for Simple RNN

plt.figure(figsize=(10, 6))

plt.plot(history_simple_rnn.history['loss'], label='Training Loss')

plt.plot(history_simple_rnn.history['val_loss'], label='Validation Loss')

plt.title('Simple RNN - Training Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.grid(True)

plt.show()

Plot training loss for RNN with contraction mapping check

plt.figure(figsize=(10, 6))

plt.plot(history_with_check.history['loss'], label='Training Loss')

plt.plot(history_with_check.history['val_loss'], label='Validation Loss')

plt.title('RNN with Contraction Mapping Check - Training Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.grid(True)

plt.show()

Plot actual vs. predicted values for RNN with contraction mapping check

plt.figure(figsize=(10, 6))

Define the x-axis values for test data

test_indices = np.arange(len(y_train), len(y_train) + len(y_test))

plt.plot(y_train,'b', label='Actual Train Data')

plt.plot(test_indices, y_test,'g', label='Actual Test Data')

Define the x-axis values for test predictions starting from the end of the training data

prediction_indices = np.arange(len(y_train), len(y_train) + len(test_predict_with_check))

Volume 94, No. 1, 2025

Page 223

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

plt.plot(prediction_indices, test_predict_with_check,'m', label='Test Predictions with contraction

mapping')

plt.title('RNN with Contraction Mapping Check - Actual vs. Predicted')

plt.xlabel('Time')

plt.ylabel('Normalized Passenger Count')

plt.legend()

plt.grid(False)

plt.show()

Plot actual vs. predicted values for RNN with contraction mapping check

plt.figure(figsize=(10, 6))

Define the x-axis values for test data

test_indices = np.arange(len(y_train), len(y_train) + len(y_test))

plt.plot(y_train,'b', label='Actual Train Data')

plt.plot(test_indices, y_test,'g', label='Actual Test Data')

Define the x-axis values for test predictions starting from the end of the training data

prediction_indices = np.arange(len(y_train), len(y_train) + len(test_predict_with_check))

plt.plot(prediction_indices, test_predict_simple_rnn,'r', label='Test Predictions without

contraction mapping')

plt.title('RNN with Contraction Mapping Check - Actual vs. Predicted')

plt.xlabel('Time')

plt.ylabel('Normalized Passenger Count')

plt.legend()

plt.grid(False)

plt.show()

I. Code for benchmark models

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

from sklearn.metrics import mean_squared_error

from sklearn.ensemble import RandomForestRegressor

from sklearn.neighbors import KNeighborsRegressor

from lightgbm import LGBMRegressor

import xgboost as xgb

from keras.models import Sequential

from keras.layers import Dense

Volume 94, No. 1, 2025

Page 224

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

Random Forest

rf = RandomForestRegressor(n_estimators=100, random_state=42)

rf.fit(X_train, y_train)

rf_predictions = rf.predict(X_test)

K-Nearest Neighbors

knn = KNeighborsRegressor(n_neighbors=5)

knn.fit(X_train, y_train)

knn_predictions = knn.predict(X_test)

XGBoost

xgb_model = xgb.XGBRegressor(objective='reg:squarederror', n_estimators=100,

random_state=42, verbosity=0)

xgb_model.fit(X_train, y_train)

xgb_predictions = xgb_model.predict(X_test)

Simple ANN

ann_model = Sequential()

ann_model.add(Dense(50, input_dim=X_train.shape[1], activation='relu'))

ann_model.add(Dense(1))

ann_model.compile(optimizer='adam', loss='mean_squared_error')

ann_model.fit(X_train, y_train, epochs=100, batch_size=32, verbose=0)

ann_predictions = ann_model.predict(X_test).flatten()

Calculate evaluation metrics for additional models

rf_mae = mean_absolute_error(y_test, rf_predictions)

rf_rmse = np.sqrt(mean_squared_error(y_test, rf_predictions))

rf_r2 = r2_score(y_test, rf_predictions)

knn_mae = mean_absolute_error(y_test, knn_predictions)

knn_rmse = np.sqrt(mean_squared_error(y_test, knn_predictions))

knn_r2 = r2_score(y_test, knn_predictions)

xgb_mae = mean_absolute_error(y_test, xgb_predictions)

xgb_rmse = np.sqrt(mean_squared_error(y_test, xgb_predictions))

xgb_r2 = r2_score(y_test, xgb_predictions)

ann_mae = mean_absolute_error(y_test, ann_predictions)

ann_rmse = np.sqrt(mean_squared_error(y_test, ann_predictions))

ann_r2 = r2_score(y_test, ann_predictions)

print("Random Forest")

print(f"Test MAE: {rf_mae:.6f}, Test RMSE: {rf_rmse:.6f}, Test R2: {rf_r2:.6f}\n")

print("K-Nearest Neighbors")

print(f"Test MAE: {knn_mae:.6f}, Test RMSE: {knn_rmse:.6f}, Test R2: {knn_r2:.6f}\n")

print("XGBoost")

print(f"Test MAE: {xgb_mae:.6f}, Test RMSE: {xgb_rmse:.6f}, Test R2: {xgb_r2:.6f}\n")

print("Artificial Neural Network")

Volume 94, No. 1, 2025

Page 225

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

print(f"Test MAE: {ann_mae:.6f}, Test RMSE: {ann_rmse:.6f}, Test R2: {ann_r2:.6f}\n")

Plot actual vs. predicted values for the best performing model

plt.figure(figsize=(10, 6))

Define the x-axis values for test data

test_indices = np.arange(len(y_train), len(y_train) + len(y_test))

plt.plot(np.arange(len(y_train)), y_train,'b', label='Actual Train Data')

plt.plot(test_indices, y_test,'g', label='Actual Test Data')

plt.plot(test_indices, rf_predictions,'r--', label='RF Predictions')

plt.plot(test_indices, knn_predictions,'y--', label='KNN Predictions')

plt.plot(test_indices, xgb_predictions,'--', label='XGBoost Predictions')

plt.plot(test_indices, ann_predictions,'c--', label='ANN Predictions')

plt.plot(prediction_indices, test_predict_with_check,'m.-', label='Test Predictions with

contraction mapping')

plt.title('Baseline Models - Actual vs. Predicted')

plt.xlabel('Time')

plt.ylabel('Normalized Passenger Count')

plt.legend()

plt.grid(False)

plt.show()

Volume 94, No. 1, 2025

Page 226

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14742173

ISSN: 0369-8963

