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Abstract 

The radio labeling of a graph G is a function f : V (G) → {1, 2, . . . , k} with the property that | f(u) 

− f(v) |≥ 1 + diam(G) − d(u, v) for every pair of vertices u, v ∈ V (G), where diam(G) is the diameter 

of G and d(u, v) is the distance between u and v in G. The radio number of G, denoted by rn(G), is 

the smallest integer k such that G admits a radio labeling. In this paper, we determine the radio 

number of Mycielski graph of a path. 
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 1 Introduction  

All graphs in this paper are finite, simple, connected, and undirected. We use the standard 

terminology, the terms not defined here may be found in [1, 2]. The length of a shortest path 

between two vertices u and v in a graph G is called the distance between u and v, and is denoted by 

dG(u, v) or simply d(u, v). The maximum distance between any two vertices in G is called diameter 

of G and is denoted by diam(G). 

Radio labeling is motivated by the channel assignment problem introduced by W. K. Hale et al [3] 

in 1980. The radio labeling of a graph is most useful in FM radio channel restrictions to overcome 

the effect of noise. The problem turns out to finding the minimum of maximum frequencies of all 

the radio stations considered under the network. The notion of radio labeling was introduced by G. 

Chartrand, D. Erwin, P. Zhang and F. Harary in [4]. Since the introduction of radio labeling, several 

authors have investigated the radio number of various networks [5, 6, 8, 9]. Recent work on radio 

labeling is found in [10, 11, 12, 13, 14]. 

 In 1955, Jan Mycielski [7] introduced an interesting graph transformation which transforms a graph 

G into a new graph M(G), called the Mycielskian or the Mycielski graph of G. Using this 

construction, he created triangle-free graphs with large chromatic numbers. In 1998, David C. Fisher 

and et al [8] obtained the diameter of M(G). 
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 We determine the radio labeling of the Mycielski graph of a path in this paper. Some of the 

definitions and results on radio labeling are listed below for immediate reference.  

Definition 1.0.1. A radio labeling of a connected graph G is an assignment of distinct positive 

integers to the vertices of G, with v ∈ V (G) labeled by f(V ), such that |f(u)−f(v)|+d(u, v) ≥ 

1+diam(G) holds for all u, v ∈ V , u ≠ v. The radio number rn(f) of a radio labeling f of G is the 

maximum label assigned by f to a vertex of G. The radio number rn(G) of G is the min{rn(f)}, over 

all radio labelings f of G. A radio labeling f of G is a minimal radio labeling of G if rn(f) = rn(G). 

 Certainly, rn(G) ≥ n and f is injective. Further, if rn(G) = n, then graph G is radio graceful [9].  

Definition 1.0.2. Let the n vertices of the given graph G be v 1 , v 2 , . . . , v n . The Mycielskian or 

Mycielski’s Graph, denoted by M(G) contains G itself as a subgraph, together with n + 1 additional 

vertices: a vertex u i  corresponding to each vertex v i of G and an extra vertex w. Each vertex u i  is 

connected by an edge to w, so that these vertices form a subgraph in the form of a star K n,1 . In 

addition, for each edge v i v j of G, the Mycielski graph includes two edges u i v j and v i u j  

Thus, if G has n vertices and m edges, M(G) has 2n + 1 vertices and 3m + n edges.  

 

1.1  Basic Results 

Theorem 1.1.1 (Gary Chartrand, David Erwin, Ping Zhang [5]). Let Cn be the n-vertex cycle, n ≥ 3. 

Then  

rn(C n ) = 
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 Theorem 1.1.2 (David c. Fisher, Patricia A. Mckenna, Elizabeth D. Boyer[8]). 

 For a graph G without isolated vertices, diam(M(G)) = min(max(2, diam(G)), 4).  

Theorem 1.1.3. By Theorem 1.1.2 For any integer n ≥ 2, diam[M(P n )] = 
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2 Main Results obtained 

Theorem 2.0.1. For any integer n ≥ 2, rn[M(P n )] = 
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Proof. Let G = [M(P n )]. When n = 2, M(P n ) ≃ C5 result follows by Theorem 1.1.1. For n ≥ 3.  

Let v
1
, v 2 , . . . , v n , u

1
, u 2 , . . . , u n , w be the vertices of G. Suppose f is a radio labeling of G  

and x
1
, x 2 , . . . , x m , where m = 2n + 1 be the rearrangement of vertices of G such that  

f(x i ) < f(xi+1) then  

f(x m ) − f(x 1m ) ≥ 1 + d − d(x m , x 1m ) 

f(x 1m ) − f(x 2m ) ≥ 1 + d − d(x 1m , x 2m ) 

. . . 

 f(x 2 ) − f(x1) ≥ 1 + d − d(x 2 , x 1 )  

adding all these inequalities we get 

 f(x m ) − f(x 1 ) ≥ (m − 1)(1 + d) − 




1

1

m

i

d(x i  , x 1i ) 

Taking f(x 1 ) = 1 

                        f(x m ) ≥ 1 + (m − 1)(1 + d) − 




1

1

m

i

 d(x i  , x 1i ) 

 

This shows that  f(x m )   is minimum whenever 




1

1

m

i

 d(x i  , x 1i ) is maximum.  

Therefore the problem reduces to the following linear integer programming problem 

.                        That is max z = 


)(

1

Gdiam

i

ii  

subjected to,  1 + 2 + . . . + )(Gdiam  = m − 1 = 2n  

where i  is the number of pairs of edges of distance i and 
Zsi'  

 

 (i) When n = 2, 3 

We have by Theorem 1.1.3 diam[M(P n )]  = 2, for n = 2, 3.  

max z = 


2

1i

ii  subjected to,  1 + 2 = m−1 = 2n. By choosing, 2  = m−1 = 2n and  1 = 0. 

Therefore we get max z =


2

1i

ii  = 1 ×  1 + 2 ×  2  = 4n. Thus f(x m ) ≥ 1 + (2n)(3) − 4n = 2n + 1. 

 On the otherhand, the labeling shown in the following Figure 1 shows that f(x m ) ≤ 2n + 1. Thus 

rn[M(P n )]  = 2n + 1, for n = 2, 3. 

ISSN: 0369-8963

Page 3

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14586105

Volume 94, No. 1, 2025



 

(ii) When n = 4  

We have by Theorem 1.1.3 diam [M(P n )] = 3, for n = 4.  

max z =


3

1i

ii   subjected to,  1 + 2 + 3 = m−1 = 2n. By choosing, 3 = 3, 2  = 5 and  1 =0. 

Therefore we get max z =


3

1i

ii   = 1 ×  1 + 2 × 2  + 3 × 3 = 19. Thus f(x m ) ≥ 1 + (2n)(4) − 19 

= 14 = 4n − 2.  

On the otherhand, the labeling shown in the following Figure 2 shows that f(xm) ≤ 4n − 2. Thus 

rn[M(P n )]  = 4n − 2, for n = 4.  

 

 

(iii) When n = 5  

We have by Theorem 1.1.3 diam [M(P n )]  = 4, for n = 5.  

ISSN: 0369-8963

Page 4

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.14586105

Volume 94, No. 1, 2025



max z = ∑ 𝑖𝛼𝑖
4
𝑖=1   subjected to 

1
+ 2 + 3 + 4 = m − 1 = 2n. By choosing, 4 = 0, 3 = 6, 2 = 4 

and 
1
= 0. Therefore we get max z =



4

1i

ii    = 1 × 
1
+ 2 × 2  + 3 × 3  + 4 × 4 = 26. Thus 

f(x m ) ≥ 1 + (2n)(5) − 26 = 25 = 4n + 5.  

On the otherhand, the labeling shown in the following Figure 3 shows that f(x m ) ≤ 25 = 4n + 5. 

Thus rn[M(P n )]   = 25 = 4n + 5, for n = 5. 

 

(iv) When n = 6  

We have by Theorem 1.1.3 diam[M(P n )]  = 4, for n = 6. 

 max z = 


4

1i

ii  subjected to  1 + 2 + 3 + 4  = m − 1 = 2n. By choosing, 4  = 0, 3  = 9, 2 = 

3 and  

  1 = 0. Therefore we get max z = 


4

1i

ii    = 1 ×  1 + 2 × 2 + 3 × 3  + 4 × 4 = 33. Thus  

f(x m )  ≥ 1 + (2n)(5) − 33 = 28 = 4n + 4.  

On the otherhand, the labeling shown in the following Figure 4 shows that f(x m )  ≤ 28 = 4n + 4. 

Thus rn[M(P n )]  = 28 = 4n + 4, for n = 6. 
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(v) When n ≥ 7 

 We have by Theorem 1.1.3 diam[M(P n )]  = 4, for n ≥ 7.  

max z = 


4

1i

ii   subjected to,  1 + 2 + 3 + 4 = m − 1 = 2n. By choosing, 4  = 0, 3  = 2n − 1, 

2  =1 and  1 = 0. Therefore we get max z =


4

1i

ii  = 1× 1 +2× 2 +3× 3  +4× 4  = 6n−1. Thus 

f(x m )  ≥ 1+(2n)(5)−(6n−1) = 4n+2. On the otherhand, we label the vertices by vertex ordering for G 

as, firstly we start from w to v
3

 and later select (2n−1) times P 3  path to cover all the vertices by 

taking alternating v i u j -paths. The ordering of vertices is as follows  w − v1 − u
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 n
. 

By labeling the vertices in this order shows that f(x m )  ≤ 4n + 2.  

Thus rn[M(P n )]  = 4n + 2, for n ≥ 7.  
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