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Abstract 

 The stability analysis of Soret-driven double diffusive Rayleigh – Benard Marangoni convection in a 

composite system with an internal heat source is investigated theoretically.  The system is confined between 

lower rigid and upper free horizontal surfaces and adiabatically insulated to temperature and concentration.  

The system is exposed to uniform and non-uniform salinity gradients.  The two-layer model is utilized to 

govern the momentum equations for fluid and porous layers, which are Navier Stokes and Darcy equations 

respectively.  The graphs are plotted using MATHEMATICA to investigate the influence of solute Rayleigh 

Number, Soret Number, Darcy number, Thermal Diffusivity Ratio, Thermal Marangoni Number, Solute 

Marangoni Number, Internal Rayleigh Number, Thermal Depth, Solute Diffusivity Ratio and the ratio of solute 

to thermal diffusivity on the onset of double-diffusive Rayleigh – Benard Marangoni Convection.  Solute 

Rayleigh number, Soret number, solute diffusivity ratio, and the ratio of solute to thermal diffusivity have a 

stabilizing impact on the onset of double-diffusive Rayleigh – Benard Marangoni convection. 

Keywords: Double Diffusive Convection, Rayleigh – Benard Convection, Marangoni Convection, Soret 

Effect, Internal Heat Source, and Composite Layer. 

1. Introduction 

Marangoni convection is convection caused by a surface tension gradient. Even slight s changes in 

temperature or solute concentration can result in convection since surface tension on the free surface is a 

large function of both those variables. The thermal diffusion process, commonly known as the Soret 

effect, is induced by a salinity gradient. A horizontal composite layer system of porous and fluid layers 

with heat and mass transfer taking place through the interface is related to many natural phenomena and 

various industrial applications. The related problem of a liquid layer overlying a porous layer is also found 

in many environmental and engineering applications as well. The water layer of a pond or a lake with a 

muddy bottom layer, transport phenomena that occur from soil to water and vice versa, and the geothermal 
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system are some of examples of environmental applications. The thermodiffu- sion effect or the Soret 

effect is the mass flux in a mixture due to a temperature gradient. This effect is very weak but can be 

important in the analysis of compositional variation in hydrocarbon reservoirs. 

Pearson (1958) investigated the convection cells induced by surface ten- sion. He found that two factors 

tending to instability would be relevant. The first one is due to temperature variations and the second is 

due to relative concentration variations. He also found that surface tension forces are responsible for 

cellular motion in many cases where the criteria given in terms of buoyancy forces would not allow for 

instability. Nield (1977) first formulated the onset of convection in a fluid layer overlying a porous layer. 

He proposed an analytic solution including the Marangoni effect at a deformable upper surface. He found 

that the Marangoni and gravity effects are additive for the onset of convection in a fluid layer overlying a 

porous medium. Trevisan and Bejan (1985) first reported on a comprehensive numerical study of the 

natural convection phenomenon occurring inside a porous layer with both heat and mass transfer from the 

side. Numerical results for overall heat and mass transfer through porous cavity are presented using a 

Darcy model and compared with scale analysis for several parameters, which governs natural convection. 

Flin chen et al(1989) investigated the horizontal superposed fluid and the porous layer. The depth ratio, is 

the ratio of the thickness of the fluid layer to that of the porous layer. The top and bottom walls were kept 

at different constant temperatures. The onset of convection was detected by a change of slope in the heat 

flux curve. The results a precipitous decrease in the critical Rayleigh number as the depth of the fluid 

layer was increased from zero, and an eightfold decrease in the critical wavelength. Anne Silberstein et al 

(1990) investigated a synthesis of results, both experimental and theoretical, that were obtained from a 

study of natural convection in fibrous in- sulat ing materials presenting a permeable interface to the 

adjacent fluid layer. Jean.K.Platten (2006) studied the different techniques to measure the Soret coeffi- 

cient, beam deflection technique, thermal diffusion forced Rayleigh scattering technique, convective 

coupling and, in particular, the onset of convection in horizontal layers, and the thermogravitational 

method). Results are provided for several systems, with both negative and positive Soret coefficients, and 

comparisons between several laboratories are made for the same systems. D.V. Alexandrov et al (2006) 

analyzed the effect of a temperature-dependent solute diffusion coefficient on the model of unidirectional 

solidification of a binary melt with a steady-state two-phase zone is studied. The Soret effect 

(thermodiffusion) is also included in the analysis. The concentration and temperature fields in the liquid, 

solid, and mixed-state phases are found as functions of all thermophysical parameters. The rate of 

solidification and two-phase zone thickness are determined as well.
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2. Mathematical formulation 

 We consider a homogeneous porous layer of thickness 𝑑𝑚  underlying an incompressible 

liquid layer of thickness d Cartesian coordinates are used with origin at the liquid - porous 

interface. The z direction is opposite to the gravitational acceleration �⃗�. The bottom of the 

porous layer is a rigid, and the upper surface of the fluid is free and the system is adiabatically 

insulated for heat and mass. The temperature difference of fluid layer is 𝑇0 − 𝑇𝑢 and of the 

porous layer is 𝑇𝑙 − 𝑇0 and that of the total system is 𝑇𝑙 − 𝑇𝑢. The concentration difference of 

fluid layer is 𝐶0 − 𝐶𝑢, of the porous layer is 𝐶𝑙  – 𝐶0. And that of the total system is 𝐶𝑙 − 𝐶𝑢. 

Governing Equations 

Under the Boussinesq approximation, the equation of continuity, the equation of fluid, the heat 

equation and the concentration equation and the equation of state are given by, 

For fluid layer,  

Equation of Continuity,  

                                                           𝛻 ∙ �⃗� = 0                                             (1) 

Equation of Momentum,  

                            𝜌0 [
𝜕�⃗⃗�

𝜕𝑡
+ (�⃗� ∙ ∇)�⃗�] = −∇𝑃 + 𝜇∇2�⃗� − 𝜌𝑔�̂�                         (2)  

Equation of Energy, 

                                   
𝜕𝑇

𝜕𝑡
+ (�⃗� ∙ ∇)𝑇 = 𝑘𝑇∇

2𝑇 + 𝑄                                         (3) 

Equation of Concentration,  

                                  
𝜕𝐶

𝜕𝑡
+ (�⃗� ∙ ∇)𝐶 = 𝑘𝐶∇

2𝐶 + 𝑘𝑇∇
2𝑇                                   (4) 

Equation of State,  

                                                𝜌 = 𝜌0(1 − 𝛼𝑇(𝑇𝑢 − 𝑇0) + 𝛼𝐶(𝐶𝑢 − 𝐶0))             (5)                        

                

 

         

For porous layer,  

Equation of Continuity,  

                                 ∇𝑚 ∙ �⃗�𝑚 = 0                                                                            (6) 

Equation of Momentum, 

𝜌0 [
1

𝜑

𝜕�⃗⃗�𝑚

𝜕𝑡
+

1

𝜑2
(�⃗�𝑚 ∙ ∇𝑚)�⃗�𝑚] = −∇𝑚𝑃𝑚 −

𝜇

𝑘
�⃗�𝑚 − 𝜌𝑚𝑔�̂�                                          (7) 

Equation of Energy, 
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                     𝜑
𝜕𝑇𝑚
𝜕𝑡

+ (�⃗�𝑚 ∙ ∇𝑚)𝑇𝑚 = 𝑘𝑇𝑚∇𝑚
2𝑇𝑚 + 𝑄𝑚                               (8) 

Equation of concentration, 

                   𝜑
𝜕𝐶𝑚
𝜕𝑡

+ (�⃗�𝑚 ∙ ∇𝑚)𝐶 = 𝑘𝐶𝑚∇
2
𝑚𝐶𝑚 + 𝑘𝑇𝑚∇𝑚

2𝑇𝑚                   (9) 

Equation of State,  

               𝜌𝑚 = 𝜌0(1 − 𝛼𝑚(𝑇𝑙 − 𝑇0) + 𝛼𝑚(𝐶𝑙 − 𝐶0))                                 (10) 

Basic state solution 

The basic state solution of the composite system is obtained for the quiescent flow where 

velocity, temperature, concentration and pressure are functions of z only and is given by, 

For fluid layers,  

�⃗�𝑓 = 0,   𝑃 = 𝑃0(𝑧),    𝑇 = 𝑇0(𝑧),   𝜌 = 𝜌𝑏(𝑧),    𝐶 = 𝐶𝑏(𝑧) 

For porous layers, 

�⃗�𝑚 = 0,    𝑃𝑚 = 𝑃𝑚𝑏(𝑧𝑚),   𝑇𝑚 = 𝑇𝑚𝑏(𝑧𝑚),     𝜌𝑚 = 𝜌𝑚𝑏(𝑧𝑚),  

  𝐶𝑚 = 𝐶𝑚𝑏(𝑧𝑚)  

The temperatures distributions 𝑇𝑏(𝑧) and 𝑇𝑚𝑏(𝑧𝑚) are 

𝑇𝑏(𝑧) = −𝑄
(𝑧2−𝑑𝑧)

2𝐾𝑇
+ (

(𝑇𝑢−𝑇0)

𝑑
) 𝑧 + 𝑇0  

𝑇𝑚𝑏(𝑧𝑚) =
𝑄𝑚

2𝐾𝑇𝑚

[𝑧𝑚
2 + 𝑑𝑚𝑧𝑚] + (

(𝑇0−𝑇1)

𝑑𝑚
) 𝑧𝑚 + 𝑇0  

The concentration distributions 𝐶𝑏(𝑧) 𝑎𝑛𝑑 𝐶𝑚𝑏(𝑧𝑚) are 

𝐶𝑏(𝑧) = 𝐶0 +
(𝐶𝑢 − 𝐶0)𝑧

𝑑
 

𝐶𝑚𝑏(𝑧𝑚) = 𝐶0 +
(𝐶0 − 𝐶𝑙)𝑧𝑚

𝑑𝑚
 

At interface temperature (𝑇0) 

𝑇0 = (
𝑇𝑢𝑘𝑇𝑑𝑚 + 𝑇𝑙𝑘𝑇𝑚𝑑

𝑑𝑑𝑚
) + (

𝑑𝑑𝑚(𝑄𝑑 + 𝑄𝑚𝑑𝑚

2(𝑑𝑘𝑇𝑚 + 𝑘𝑇𝑑𝑚)
) 

At interface concentration (C0) 

𝐶0 =
𝐶𝑢𝑘𝐶𝑑𝑚 + 𝐶𝑙𝑘𝐶𝑚𝑑

𝑘𝐶𝑚𝑑 + 𝑘𝐶𝑑𝑚
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Linear Stability Analysis 

Perturbed state 

In order to investigate the stability of the basic solution, we superpose perturbations on the 

system in the form. 

for fluid layers, 

�⃗� = 0 + 𝑞′⃗⃗⃗⃗ ,    𝑃 = 𝑃𝑏(𝑧) + 𝑃
′,     𝑇 = 𝑇𝑏(𝑧) + 𝜃,     𝐶 = 𝐶𝑏(𝑧) + ∅ 

For porous layers,  

�⃗�𝑚 = 0 + 𝑞′⃗⃗⃗⃗
𝑚𝑏
,    𝑃𝑚 = 𝑃𝑚𝑏(𝑧𝑚) + 𝑃𝑚

′,     𝑇𝑚 = 𝑇𝑚𝑏(𝑧𝑚) + 𝜃𝑚, 

                                                                                   𝐶𝑚 = 𝐶𝑚𝑏(𝑧𝑚) + ∅𝑚 

The above equations are substituted in equations (1) to (10) and are linearized in the usual 

manner. By taking curl twice on equations (2) and (7), the pressure term is eliminated and only 

the vertical component is retained. The variables are then non-dimensionalized by choosing 

separate length scales for the two layers so that each layer is of unit depth. 

Thus we obtained non-dimensional linearized equations for momentum, temperature, 

concentration in fluid and porous layers respectively. for fluid layers, 

(𝑢, 𝑣, 𝑤) =
𝑘𝑇
𝑑
(𝑢∗, 𝑣∗, 𝑤∗), 𝜃 = (𝑇0 − 𝑇𝑢)𝜃

∗,    ∇=
1

𝑑
∇∗          (11) 

(𝑥, 𝑦, 𝑧) = 𝑑(𝑥∗, 𝑦∗, 𝑧∗),   ∅ = (𝐶0 − 𝐶𝑢)∅
∗,     𝑡 =

𝑑2

𝑘𝑇
𝑡∗                  (12) 

For porous layers, 

(𝑢𝑚, 𝑣𝑚, 𝑤𝑚) =
𝑘𝑇𝑚
𝑑𝑚

(𝑢𝑚
∗ , 𝑣𝑚

∗ , 𝑤𝑚
∗ ), 𝜃𝑚 = (𝑇𝑙 − 𝑇0)𝜃𝑚

∗ ,    ∇𝑚=
1

𝑑𝑚
∇𝑚
∗       (13) 

(𝑥𝑚, 𝑦𝑚, 𝑧𝑚) = 𝑑𝑚(𝑥𝑚
∗ , 𝑦𝑚

∗ , 𝑧𝑚
∗ ),   ∅𝑚 = (𝐶𝑙 − 𝐶0)∅𝑚

∗ ,     𝑡𝑚 =
𝑑𝑚
2

𝑘𝑚
𝑡𝑚
∗              (14) 

Substituting (11) to (14) in the above equations for momentum, temperature, concentration in 

fluid and porous layers.  We obtain the following non-dimensionalised equations. 

For fluid layer, 

1

𝑃𝑟

𝜕(∇2𝑤)

𝜕𝑡
= ∇4𝑤 + ∇2

2𝜃 𝑅𝑎𝑇 − ∇2
2∅𝑅𝑎𝑆                                                     (15) 

𝜕𝜃

𝜕𝑡
− 𝑤 = ∇2𝜃 + 𝑅𝐼(2𝑧 − 1)𝑤                                                                    (16) 

𝜕∅

𝜕𝑡
− 𝑤 = 𝜏∇2∅ + 𝑆𝑟∇

2𝜃                                                                              (17) 

For porous layer, 
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𝐷𝑎
𝑃𝑟𝑚

𝜕(∇𝑚
2 𝑤𝑚)

𝜕𝑡
= −∇𝑚

4 𝑤𝑚 + ∇2
2𝜃𝑚𝑅𝑎𝑇𝑚 − ∇2

2∅𝑚𝑅𝑎𝑆𝑚                                  (18) 

        

𝐴
𝜕𝜃𝑚
𝜕𝑡𝑚

−𝑤𝑚 = ∇𝑚
2 𝜃𝑚 + 𝑅𝐼𝑚(2𝑧𝑚 − 1)𝑤𝑚                                                           (19)     

∅
𝜕∅𝑚
𝜕𝑡𝑚

−𝑤𝑚 = 𝜏𝑚∇𝑚
2 ∅𝑚 + 𝑆𝑟𝑚∇𝑚

2 𝜃𝑚                                                               (20) 

Where,  

𝑃𝑟 =
𝜇

𝜌0𝑘𝑇
  is the Prandtl number in fluid layer. 

𝑅𝑎𝑇 =
𝜌0𝑑

3𝑔𝛼𝑇(𝑇0−𝑇𝑢)

𝜇𝑘𝑇
  is Rayleigh number in fluid layer. 

𝑅𝑎𝑆 =
𝜌0𝑑

3𝑔𝛼𝐶(𝐶0−𝐶𝑢)

𝜇𝑘𝑇
  is solute Rayleigh number in fluid layer. 

𝑆𝑟 =
𝜏(𝑇0−𝑇𝑢)

(𝐶0−𝐶𝑢)
 is soret number in fluid layer.  

𝜏 =
𝑘𝐶

𝑘𝑇
  is the ratio of solute to temperature diffusivity in fluid layer. 

𝑃𝑟𝑚 =
𝜇∅

𝜌0𝑘𝑇𝑚
 is the Prandtl number in porous layer. 

𝑅𝑎𝑇𝑚 =
𝜌0𝑑 𝑔𝛼

′
𝑇(𝑇𝑙−𝑇0)

𝜇𝑘𝑇𝑚
  is Rayleigh number in porous layer. 

𝑅𝑎𝑆𝑚 =
𝑘 𝜌0𝑑

3 𝑔𝛼𝐶(𝐶𝑙−𝐶0)

𝜇𝑘𝐶𝑚
  is solute Rayleigh number in porous layer. 

𝐷𝑎 =
𝑘

𝑑2𝑚
  is solute Rayleigh number in porous layer. 

𝑆𝑟𝑚 =
𝑘𝐶𝑚

𝑘𝑇𝑚

(𝑇𝑙−𝑇0)

(𝐶𝑙−𝐶0)
  is soret number in porous layer. 

𝜏𝑚 =
𝑘𝐶𝑚

𝑘𝑇𝑚
  is the ratio of solute to temperature diffusivity in porous layer. 

𝑅𝑎𝑇𝑚 =
𝛼𝑇�̂�𝑇

2

�̂�4
 𝐷𝑎 𝑅𝑎𝑇  is the Relation between 𝑅𝑎𝑇 and 𝑅𝑎𝑇𝑚  

𝑅𝑎𝑆𝑚 =
𝛼𝐶 �̂�𝐶

2

�̂�4
 𝐷𝑎 𝑅𝑎𝑆 is the Relation between 𝑅𝑎𝑆 and 𝑅𝑎𝑆𝑚 

Thus the momentum equation in porous layer is transformed in terms of   

𝑅𝑎𝑇 − 𝑅𝑎𝑆. 

𝐷𝑎

𝑃𝑟

𝜕∇2𝑤𝑚
𝜕𝑡

= −∇2𝑤𝑚 +
𝛼𝑇�̂�𝑇

2

�̂�4
 𝐷𝑎(∇2

2𝜃𝑚)𝑅𝑎𝑇 − 
𝛼𝐶  �̂�𝐶

2

�̂�4
 𝐷𝑎(∇2

2∅𝑚)𝑅𝑎𝑆 

The non-dimensionalized equations are subjected to normal mode expansion on the dependent 

variables in the fluid and porous layers as: 
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[

𝑤
𝜃
∅
] = [

𝑤(𝑧)

𝜃(𝑧)

∅(𝑧)
]  𝑓(𝑥, 𝑦, 𝑧) 𝑒𝑖(𝑙𝑥+𝑚𝑦)+𝑛𝑡                                                    (21)  

[

𝑤𝑚
𝜃𝑚
∅𝑚

] = [

𝑤𝑚(𝑧𝑚)

𝜃𝑚(𝑧𝑚)

∅𝑚(𝑧𝑚)
] 𝑓𝑚(𝑥𝑚, 𝑦𝑚 , 𝑧𝑚) 𝑒

𝑖(𝑙𝑚𝑥+𝑚𝑚𝑦)+𝑛𝑚𝑡                           (22) 

with   ∇2
2𝑓 + 𝑎2𝑓 = 0  and ∇2𝑚

2 𝑓𝑚 + 𝑎𝑚
2 𝑓𝑚 = 0 where 𝑎 𝑎𝑛𝑑 𝑎𝑚  are the wave numbers, 

𝑛 𝑎𝑛𝑑 𝑛𝑚 are the frequencies, 𝑊 𝑎𝑛𝑑 𝑊𝑚 are the dimensionless vertical velocities in the fluid 

and porous layers respectively.  As the principle of exchange of stability is valid for the present 

problem, the time derivatives are dropped, i.e., 𝑛 = 0 = 𝑛𝑚 .  Where 𝑙 𝑎𝑛𝑑 𝑚   are the 

horizontal wave number in the 𝑥 𝑎𝑛𝑑 𝑦 directions respectively.  Substituting equations (21) 

and (22) in equations (15) to (20), we get the following ordinary differential equations: 

 

for fluid layer, 

(𝐷2 − 𝑎2)𝑤(𝑧) = 𝑎2(𝑅𝑎𝑇𝜃 − 𝑅𝑎𝑆∅)                                                           (23) 
(𝐷2 − 𝑎2)𝜃(𝑧) + 𝑤(𝑧) + (𝑅𝑎𝐼(2𝑧 − 1)𝑤(𝑧) = 0                                      (24) 
𝜏(𝐷2 − 𝑎2)∅(𝑧) + 𝑤(𝑧) + 𝑆𝑟(𝐷2 − 𝑎2)𝜃(𝑧) = 0                                         (25) 

 

For porous layer, 

 

(𝐷𝑚
2 − 𝑎𝑚

2  )𝑤𝑚(𝑧𝑚) = 𝑎𝑚
2 (𝑅𝑎𝑇𝑚𝜃𝑚 − 𝑅𝑎𝑆𝑚∅𝑚)                                                            (26) 

(𝐷𝑚
2 − 𝑎𝑚

2  )𝜃𝑚(𝑧𝑚) + 𝑤𝑚(𝑧𝑚) + (𝑅𝑎𝐼𝑚(2𝑧𝑚 − 1)𝑤𝑚(𝑧𝑚) = 0                              (27) 

𝜏(𝐷𝑚
2 − 𝑎𝑚

2  )∅𝑚(𝑧𝑚) +𝑊𝑚(𝑧𝑚) + 𝑆𝑟𝑚(𝐷𝑚
2 − 𝑎𝑚

2  )𝜃𝑚(𝑧𝑚) = 0                            (28) 

Where,  

𝑎  and 𝑎𝑚  are the non dimensional horizontal wave number, 
𝜕

𝜕𝑧
= 𝐷  and     

𝜕

𝜕𝑧𝑚
= 𝐷𝑚 , 

𝛷 𝑎𝑛𝑑 𝛷𝑚  are the concentrations 𝛩 𝑎𝑛𝑑 𝛩𝑚are the temperature in fluid and porous layers 

respectively.  𝑊 𝑎𝑛𝑑 𝑊𝑚 are dimensionless vertical velocity distribution in fluid and porous 

layers respectively.  

3. Boundary Conditions 

 Boundary conditions at the fluid and porous layer interface have a great effect on the prediction 

of convection stability in a composite layer.  The interface effect also determines the flow 

pattern, temperature mass distributions and heat transfer rates.  Equations (23) to (28) are to be 

solved subjected to the following appropriate velocity, temperature and concentration 

boundary conditions. 

The velocity boundary conditions are: 

At the free surface of the fluid layer, 

𝑊(1) = 0 

𝐷2𝑊(1) +𝑀𝑎𝑇𝑎
2𝜃(1) + 𝑀𝑎𝑆𝑎

2𝜙(1) = 0 

At the rigid surface of the porous layer, 
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𝑊𝑚(0) = 0 

At interface,  

𝑊(0) =
�̂�

�̂�𝑇
𝑊𝑚(1) 

𝐷2𝑊(0) =
�̂�3

�̂�𝑇
𝐷𝑚
2𝑊𝑚(1) 

𝐷3𝑊(0) =
�̂�4

�̂�𝑇𝐷𝑎
𝐷𝑚𝑊𝑚(1) 

Adiabatic temperature boundary condition: 

At the top of the fluid layer, 

𝐷𝛩(1) = 0 

At the bottom of the porous layer, 

𝐷𝑚𝛩𝑚(0) = 0 

At interface,  

𝛩(0) =
�̂�𝑇

�̂�
𝛩𝑚(1) 

𝐷𝛩(0) = 𝐷𝑚𝛩𝑚(1) 

 

Adiabatic concentration boundary condition: 

At the top of the fluid layer 

𝐷𝛷(1) = 0 

At the bottom of the porous layer 

𝐷𝑚𝛷𝑚(0) = 0 

At interface 

𝛷(0) =
�̂�𝐶

�̂�
𝛷𝑚(1) 

𝐷𝛷(0) = 𝐷𝑚𝛷𝑚(1) 

The system comprising of equations (23) to (24) corresponds to the fluid medium and the 

system comprising of equations (25) to (28) corresponds to the porous medium along with the 

boundary conditions forms an eigenvalue problem with 𝑅𝑎𝑇 being the eigenvalue.  Since both 

systems consist of space varying coefficients.  It is no longer possible to obtain a closed form 

solution of the problem.  We therefore use a regular perturbation method to solve the eigenvalue 

problem. 
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4. Method of solution by Regular Perturbation Technique 

An eigen value problem with 𝑅𝑎𝑇as an eigen value that has to be solved for different salinity 

gradients.  The horizontal wavenumber 𝑎 is negligibly small.  Hence, the eigen value problem 

is solved by regular Perturbation technique with wave number 𝑎 as a perturbation parameter 

accordingly, the variables 𝑊,𝛷 𝑎𝑛𝑑 𝛩 expanded in powers of 𝑎2 as,  

(𝑤(𝑧), 𝜃(𝑧), 𝜙(𝑧)) =∑(𝑎2)𝑖
∞

𝑖=0

(𝑊𝑖(𝑧), 𝛩𝑖(𝑧), 𝛷𝑖(𝑧))                                                      (29) 

(𝑤𝑚(𝑧𝑚), 𝜃𝑚(𝑧𝑚), 𝜙𝑚(𝑧𝑚)) =∑(𝑎𝑚
2 )𝑖

∞

𝑖=0

(𝑊𝑚𝑖(𝑧𝑚), 𝛩𝑚𝑖(𝑧𝑚), 𝛷𝑚𝑖(𝑧𝑚))                     (30) 

Substituting equation (29) and (30) into equation (23) to (28) yields a sequence of equation for 

the unknown functions. 

𝑊𝑖(𝑧),𝑊𝑚𝑖(𝑧𝑚), 𝛩𝑖(𝑧), 𝛩𝑚𝑖(𝑧𝑚), 𝛷𝑖(𝑧), 𝛷𝑚𝑖(𝑧𝑚)  for 𝑖 = 0,1,2,3…… 

The zeroth order equations are: 

𝐷4𝑊0(𝑧) = 0 

𝐷𝑚
2𝑊𝑚0(𝑧𝑚) = 0 

𝐷2𝛩0(𝑧) = 0 

𝐷𝑚
2 𝛩𝑚0(𝑧𝑚) = 0 

𝐷2𝛷0(𝑧) = 0 

𝐷𝑚
2𝛷𝑚0(𝑧𝑚) = 0 

The corresponding velocity boundary conditions of zeroth order are: 

𝑊0(1) = 0 

𝐷2𝑊0(1) = 0 

𝑊𝑚0(0) = 0 

𝑊0(0) =
�̂�

�̂�𝑇
𝑊𝑚0(1) 

𝐷2𝑊0(0) =
�̂�3

�̂�𝑇
𝐷𝑚
2𝑊𝑚0(1) 

𝐷3𝑊0(0) = −
�̂�4

�̂�𝑇
𝐷𝑚𝑊𝑚0(1) 

The corresponding adiabatic thermal boundary conditions of zeroth order are: 

𝐷𝛩0(1) = 0 

𝐷𝑚𝛩𝑚0(1) = 0 
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𝛩0(0) =
�̂�𝑇

�̂�
𝛩𝑚0(1) 

𝐷𝛩0(0) = 𝐷𝑚𝛩𝑚0(0) 

The corresponding adiabatic concentration boundary conditions of zeroth order are: 

𝐷𝛷0(1) = 0 

𝐷𝑚𝛷𝑚0(0) = 0 

𝛷0(0) =
�̂�𝐶

�̂�
𝛷𝑚0(1) 

𝐷𝛷0(0) = 𝐷𝑚𝛷𝑚0(1) 

The solutions to zeroth order equations are: 

𝑊0(𝑧) = 0 

𝑊𝑚0(𝑧𝑚) = 0 

𝛩0(𝑧) = �̂� 

𝛩𝑚0(𝑧𝑚) = 1 

𝛷0(𝑧) = �̂� 

𝛷𝑚0(𝑧𝑚) = 1 

The equations of first order of 𝑎2 are: 

𝐷4𝑊1(𝑧) = 𝑅𝑎𝑇�̂� − 𝑅𝑎𝑆�̂�                                                                           (31) 

𝐷𝑚
4𝑊𝑚1(𝑧𝑚) = −𝑅𝑎𝑇𝑚 + 𝑅𝑎𝑆𝑚                                                                 (32) 

𝐷2𝛩1(𝑧) +𝑊1(𝑧) + 𝑅𝐼(2𝑧 − 1)𝑊1(𝑧) = �̂�                                            (33) 

𝐷𝑚
2 𝛩𝑚1(𝑧𝑚) +𝑊𝑚1(𝑧𝑚) + 𝑅𝐼𝑚(2𝑧𝑚 + 1)𝑊𝑚1(𝑧𝑚) = 1                      (34) 

𝜏 𝐷2𝛷1(𝑧) +𝑊1(𝑧) + 𝑆𝑟𝐷
2𝛩1(𝑧) = 𝜏 �̂� + 𝑆𝑟�̂�                                       (35) 

𝜏𝑚𝐷𝑚
2𝛷𝑚1(𝑧𝑚) +𝑊𝑚1(𝑧𝑚) + 𝑆𝑟𝑚𝐷

2
𝑚
2
𝛩𝑚1(𝑧𝑚) = 1                               (36) 

The corresponding velocity boundary conditions of first order of 𝑎2 are: 

𝑊1(1) = 0 

𝐷2𝑊1(1) + 𝑀𝑎𝑇�̂� + 𝑀𝑎𝑆�̂� = 0 

𝑊𝑚1(0) = 0 

𝑊1(0) =
1

�̂�𝑇�̂�
𝑊𝑚(1) 

𝐷2𝑊1(0) =
�̂�

�̂�𝑇
𝐷𝑚
2𝑊𝑚(1) 
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𝐷3𝑊1(0) = −
𝑑2̂

𝐷𝑎�̂�𝑇
𝐷𝑚𝑊𝑚(1) 

The solutions to equations (31) and (32) after applying velocity boundary conditions , we 

obtain, 

𝑊1(𝑧) = (𝐴8 + 𝐴10𝑧 + 𝐴2𝑧
2 + 𝐴4𝑧

3 +
�̂�

24
𝑧4)𝑅𝑎𝑇

+ ((𝐴7 + 𝐴9𝑧 + 𝐴1𝑧
2 + 𝐴3𝑧

3 −
�̂�

24
𝑧4)𝑅𝑎𝑆)

+ (
1

�̂��̂�𝑇𝐷𝑎
+ 𝐴12𝑧 −

�̂�

6
𝑧3)𝑀𝑎𝑇 + (

�̂�

�̂��̂�𝑇�̂�𝐷𝑎
+ 𝐴11𝑧 −

�̂�

6
𝑧3)𝑀𝑎𝑆 

 

𝑊𝑚(𝑧𝑚) = (𝐴6𝑧𝑚 −
�̂�2𝐷𝑎

2
𝑧𝑚
2 )𝑅𝑎𝑇 + (𝐴5𝑧𝑚 +

�̂�2𝐷𝑎

2
𝑧𝑚
2 )𝑅𝑎𝑆 + (

1

𝐷𝑎
𝑧𝑚)𝑀𝑎𝑇

+ (
�̂�

�̂�𝐷𝑎
𝑧𝑚)𝑀𝑎𝑆 

 

 

Where, 

𝐴1 =
�̂�𝐶
2

2�̂�𝑇

𝐷𝑎

�̂�3
,        𝐴2 = −

�̂�𝑇
2

𝐷𝑎

�̂�3
, 𝐴3 = −(

�̂�𝐶
12𝑑

+
𝐴1
3
) ,        𝐴4 = −(

�̂�𝑇
12𝑑

−
𝐴2
3
)  

   𝐴5 = −(
6�̂�𝑇𝐷𝑎𝐴3

�̂�2
−
�̂�𝐶
2𝐷𝑎

�̂�4
),    𝐴6 = −(

�̂�𝑇
2𝐷𝑎

�̂�4
−
6�̂�𝑇𝐷𝑎𝐴4

�̂�2
), 

𝐴7 = −(
𝐴5

�̂��̂�𝑇
+
�̂�𝐶
2

2�̂�𝑇

𝐷𝑎

�̂�5
),    𝐴8 = (

𝐴6

�̂��̂�𝑇
−
�̂�𝑇𝐷𝑎

2�̂�5
),     

  
    
𝐴 9 = −𝐴7 − 𝐴1 − 𝐴3 +

�̂�𝐶

12�̂�
,      𝐴10 = −𝐴8 − 𝐴2 − 𝐴4 −

�̂�𝑇

24�̂�
   

5. Compatibility condition 

Compatibility condition is obtained by integrating the temperature  and the concentration 

equations.  Integrating temperature and concentrations equations (33) and (34) between z=0 

and z=1, and multiplying equation (35) and (36) by 
1

�̂�2
 and integrate between 𝑧𝑚 =

0  𝑎𝑛𝑑  𝑧𝑚 = 1 and adding the resulting equations, we obtain the compatibility condition as, 
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{
 
 
 

 
 
 

𝑆𝑟

𝜏
(1 − 𝑅𝐼)∫ 𝑊1𝑓(𝑧)𝑑𝑧 +

2𝑅𝐼𝑆𝑟

𝜏
(1 − 𝑅𝐼) ∫ 𝑧𝑊1𝑓(𝑧)𝑑𝑧

1

0

1

0

+
𝑆𝑟𝑚(1 + 𝑅𝐼𝑚)

𝜏𝑚�̂�2
∫

𝑊𝑚1𝑓𝑚(𝑧𝑚)𝑑𝑧𝑚 +
2𝑅𝐼𝑚𝑆𝑟𝑚

𝜏𝑚�̂�2
 ∫ 𝑧𝑚𝑊𝑚1𝑓𝑚(𝑧𝑚)𝑑𝑧𝑚

1

0

−
1

𝜏
∫ 𝑊1𝑔(𝑧)𝑑𝑧
1

0

−
1

𝜏𝑚�̂�2
∫ 𝑊𝑚1𝑔𝑚(𝑧𝑚)𝑑𝑧𝑚

1

0

1

0

}
 
 
 

 
 
 

= −
�̂�𝐶

�̂�
−
1

�̂�2
 

By substituting the expression for 𝑊1 𝑎𝑛𝑑 𝑊𝑚1  and 𝑓(𝑧) = 𝑓𝑚(𝑧𝑚) = 1  into the above  

equation, integrating and solving we obtain critical Rayleigh number 𝑅𝑐1. 

𝑅𝑐1 =
∑−∏ 𝑅𝑎𝑆 −∏ 𝑀𝑎𝑇21 −∏ 𝑀𝑎𝑆3

𝛱4
 

  Where, 

𝛱1 = (𝐵2 + 𝐵6 + 𝐵10 + 𝐵14 + 𝐵18 + 𝐵22), 

𝛱2 = (𝐵3 + 𝐵7 + 𝐵11 + 𝐵15 + 𝐵19 + 𝐵23), 

𝛱3 = (𝐵4 + 𝐵8 + 𝐵12 + 𝐵16 + 𝐵20 + 𝐵23), 

𝛱4 = (𝐵1 + 𝐵5 + 𝐵9 + 𝐵13 + 𝐵17 + 𝐵21) 

𝐵1 =
𝑆𝑟

𝜏
(1 − 𝑅𝐼) (

𝐴10

2
+
𝐴2

3
+

𝐴4

4
+ 𝐴8 +

�̂�𝑇

120 𝑑
); 

𝐵2 =
𝑆𝑟

𝜏
(1 − 𝑅𝐼) (

𝐴9

2
+
𝐴1

3
+

𝐴3

4
+ 𝐴7 −

�̂�𝐶

120 𝑑
); 

𝐵3 = −
(−1 + 𝑅𝐼)𝑆𝑟

24𝑑2𝜏
(12 + 𝑑𝑘𝑇);       𝐵4 = −

(−1 + 𝑅𝐼)𝑆𝑟 𝑘𝐶
8𝑑2𝜏 𝑘𝑇

(−12 + 𝑑 𝑘𝑇) ;  

𝐵5 =
𝑅𝐼𝑆𝑟

𝜏
(
2𝐴10
3

+
𝐴2
2
+
2𝐴4
5
+ 𝐴8 +

�̂�𝑇
72 𝑑

) ; 

𝐵6 = −
𝑅𝐼𝑆𝑟

𝜏
(
2𝐴9
3
+
𝐴1
2
+
2𝐴3
5
+ 𝐴7 −

�̂�𝐶
72 𝑑

) ;        𝐵7 =
𝑅𝐼𝑆𝑟

3𝑑2𝜏
+
2𝑘𝑇𝑅𝐼𝑆𝑟

45 𝑑𝜏
 ;  

𝐵8 =
5𝐾𝐶𝑅𝐼𝑆𝑟

3𝑑2𝑘𝑇𝜏
−
8𝑘𝐶𝑅𝐼𝑆𝑟

45 𝑑𝜏
;                      𝐵9 =

(1 + 𝑅𝐼𝑚)𝑆𝑟𝑚(3𝐴6𝑑
4 − 𝐷𝑎𝑘𝑇

2)

6𝑑6𝜏𝑚
 

𝐵10 =
(1 + 𝑅𝐼𝑚)𝑆𝑟𝑚(3𝐴5𝑑

4 − 𝐷𝑎𝑘𝐶
2)

6𝑑6𝜏𝑚
;              𝐵11 =

𝑘𝑇𝑆𝑟𝑚
2𝑑3𝜏𝑚

+
𝑘𝑇  𝑅𝐼𝑚 𝑆𝑟𝑚
2𝑑3𝜏𝑚

 ;     

𝐵12 =
𝑘𝐶𝑆𝑟𝑚
2𝑑3𝜏𝑚

+
𝑘𝐶  𝑅𝐼𝑚 𝑆𝑟𝑚
2𝑑3𝜏𝑚

;                     𝐵13 =
2𝐴6𝑅𝐼𝑚𝑆𝑟𝑚
3𝑑2𝜏𝑚

−
𝐷𝑎𝑘𝑇

2 𝑅𝐼𝑚 𝑆𝑟𝑚
4𝑑6𝜏𝑚

; 

𝐵14 =
2𝐴5𝑅𝐼𝑚𝑆𝑟𝑚
3𝑑2𝜏𝑚

−
𝐷𝑎𝑘𝐶

2 𝑅𝐼𝑚 𝑆𝑟𝑚
4𝑑6𝜏𝑚

;                    𝐵15 =
2𝑘𝑇 𝑅𝐼𝑚 𝑆𝑟𝑚
3𝑑3𝜏𝑚

;  

𝐵16 =
2𝑘𝐶  𝑅𝐼𝑚 𝑆𝑟𝑚
3𝑑3𝜏𝑚

;                        𝐵17 = −
1

𝜏
(
𝐴10
2
+
𝐴2
3
+
𝐴4
4
+ 𝐴8 +

�̂�𝑇
120 𝑑

) ; 
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 𝐵18 = −
1

𝜏
(
𝐴9
2
+
𝐴1
3
+
𝐴3
4
+ 𝐴7 −

�̂�𝐶
120 𝑑

) ;                  𝐵19 = −
1

2𝑑2𝜏
−

𝑘𝑇
24 𝑑𝜏

; 

𝐵20 = −
𝑘𝐶
8 𝑑𝜏

−
3𝑘𝐶

2𝑑2𝑘𝑇𝜏
;                               𝐵21 = −

𝐴6
2𝑑2𝜏𝑚

+
𝐷𝑎𝑘𝑇

2

6𝑑6𝜏𝑚
; 

𝐵22 = −
𝐴5

2𝑑2𝜏𝑚
+
𝐷𝑎𝑘𝐶

2

6𝑑6𝜏𝑚
;             𝐵23 = −

𝑘𝑇
2 𝑑3𝜏𝑚

;              𝐵24 = −
𝑘𝐶

2 𝑑3𝜏𝑚
  

6. Graphical Interpretations 

The onset of Rayleigh-Bénard-Marangoni convection in a composite layer is investigated, with 

a focus on the critical conditions for the onset of instability. The study examines how the 

Rayleigh number varies with the depth ratio, incorporating the effects of key parameters such 

as the solute Rayleigh number, Soret number, Darcy number, thermal Marangoni number, 

solute Marangoni number, internal Rayleigh number, thermal diffusivity ratio, solute 

diffusivity ratio, and the ratio of solute to thermal diffusivity. The stability analysis is 

performed using linear stability theory, and the critical Rayleigh number is determined as a 

function of the governing parameters. The results, presented graphically, reveal the combined 

effects of thermal and solutal buoyancy, interfacial tension gradients, and the porous medium 

properties on the stability thresholds. Specific trends are observed, such as the destabilizing 

influence of the thermal and solutal Marangoni numbers and the stabilizing role of the Darcy 

number, which characterizes the permeability of the porous medium. Parameters like the Soret 

number and diffusivity ratios significantly impact the coupling between thermal and solutal 

fields, influencing the onset of convection. For clarity, certain parameters are held constant 

during the analysis, and their values are chosen based on physical relevance to the problem. 

This comprehensive investigation provides insights into the fundamental mechanisms driving 

convection in composite systems.The fixed  value of the parameters are 𝐷𝑎 = 0.03,𝑀𝑎𝑇 =
5,𝑀𝑎𝑠 = 5, 𝑅𝐼 = 0.1, 𝑆𝑟 = 0.5, 𝑅𝑎𝑠 = 100, 𝜅�̂� = 1.0, 𝜅�̂� = 1.0 and τ =  0.3. 

Figure-1 illustrates the impact of the various values Darcy number 𝐷𝑎  =  0.03, 0.04 and 0.05 

on thermal convection in a porous medium, particularly focusing on the onset convection. For 

a fixed depth ratio , it is evident that as Da increases, flow resistance decreases, as reflected by 

the reduction in the critical Rayleigh number. This reduction highlights that a higher Da 

destabilizes the system, allowing convective motion to commence at lower Rayleigh numbers 

and thereby promoting the earlier onset of DDRBM convection. The physical interpretation of 

this phenomenon is tied to the permeability of the medium. As Da increases, the porous 

medium becomes more permeable, reducing the damping effect of viscous forces on flow and 

enhancing the convective instability. Consequently, the system transitions from a more stable 

to a less stable state as Da rises. Additionally, the convergence of curves at both ends of the 

plot suggests consistent system behavior at extreme values of Da.  The porous medium exhibits 

behavior similar to free fluid convection. These trends confirm that Da is a critical parameter 

governing the stability and onset of convection in porous systems. 
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Figure-1:The effect of Darcy number (𝐷𝑎) on 

critical Rayleigh number (RaC) 

 

 

Figure-2:The effect of Solute diffusivity  

(𝜅𝑐) on critical Rayleigh number (RaC) 

  

 

Figure-3:The effect of Thermal diffusivity  

(𝜅𝑇) on critical Rayleigh number (RaC) 

 

Figure-4:The effect of Solutal Marangoni 

number  (𝑀𝑎𝑠) on critical Rayleigh number 

(RaC) 

 

 

Volume 94, No. 2, 2025

Page 108

Periodico di Mineralogia

https://doi.org/10.5281/zenodo.15046858

ISSN: 0369-8963



  

 

Figure-5:The effect of Solutal Marangoni 

numbe3er (𝑀𝑎𝑇) on critical Rayleigh number 

(RaC)  

 

 

Figure-6:The effect of Solutal Rayleigh 

number (𝑅𝑎𝑠 ) on critical Rayleigh number 

(RaC) 

 
 

Figure-7:The effect of Internal Rayleigh 

number (RI) on critical Rayleigh number 

(RaC) 

Figure-8:The effect of Soret number (Sr) on 

critical Rayleigh number (RaC) 

Figure-2 illustrates the influence of the solute diffusivity (𝜅𝑐  =  0.8, 0.9  and 1) on 

DDRBM convection in a composite layer. For a fixed value of the depth ratio, an increase 

in the Rayleigh number indicates that flow resistance increases with higher values of the 

diffusivity ratio. Consequently, this parameter tends to stabilize the system, thereby 

delaying the onset of DDRBM convection. But the effect different values of thermal 

diffusivity ( 𝜅𝑇  =  0.8, 0.9  and 1) plays opposite role as shown in figure-3 and plays dual 
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role. Figures 4 and 5 illustrate the influence of Solutal and Thermal Marangoni numbers 

( 𝑀𝑎𝑠 = 𝑀𝑎𝑇 =  5, 10 𝑎𝑛𝑑 15  ) on DDRBM convection. As the Rayleigh number 

increases, the flow resistance intensifies due to enhanced buoyancy effects. This resistance 

becomes more pronounced for higher values of the Solutal and Thermal Marangoni 

numbers (𝑀𝑎𝑠  and 𝑀𝑎𝑇), indicating that interfacial tension gradients play a significant role 

in stabilizing the flow. Consequently, DDRBM convection can be delayed or suppressed 

under conditions with sufficiently large Marangoni numbers. This suggests that the 

interplay between thermal and solutal effects provides a mechanism to regulate convection 

in the system, potentially extending the stability regime for certain parameter ranges. Such 

findings are critical for understanding and optimizing transport processes in systems 

governed by coupled thermal and solutal effects. Figure- 6 illustrates that an increase in 

the Solutal Rayleigh number (Ras  = 100, 200 and 300) leads to a corresponding rise in 

the overall Rayleigh number (Ra) . This increase in (Ras)  enhances the concentration 

gradients within the fluid, which delays the onset of convection by increasing the 

stabilizing effect of solutal buoyancy forces. Consequently, a higher (Ras) stabilizes the 

onset of  Double Diffusive Rayleigh-Benard Marangoni (DDRBM) convection. Figure-7 

demonstrates that an increase in the Internal Rayleigh number (𝑅𝐼  =  0.1, 0.2 𝑎𝑛𝑑 0.3) 

enhances the internal heat generation within the fluid. This additional heat source reduces 

the thermal stability of the system, thereby hastening the onset of convection. As a result, 

an increase in (𝑅𝐼) destabilizes the system, leading to the earlier onset of Double Diffusive 

Rayleigh-Bénard Marangoni (DDRBM) convection. These results underscore the 

destabilizing role of internal heat sources in systems influenced by coupled thermal and 

solutal effects, providing insights into the thermal management and stability of such 

configurations. Figure -8 demonstrates that an increase in the Soret parameter (𝑆𝑟 =
0.3, 0.4 𝑎𝑛𝑑 0.5)  leads to an increase in the critical Rayleigh number 𝑅𝑎𝑐  across all 

salinity gradients. This rise in (𝑆𝑟) enhances the thermal diffusivity within the system, 

which accelerates the onset of convection by reducing the thermal resistance. 

Consequently, the increase in (𝑆𝑟) destabilizes the system, the onset of Rayleigh-Bénard 

Marangoni convection at lower stability thresholds. These findings emphasize the 

destabilizing influence of thermal stratification in systems where both thermal and solutal 

gradients govern the fluid behavior. 

7. Conclusion 

Double Diffusive Rayleigh-Barnard-Marangoni (DDRBM) convection in a composite layered 

system, incorporating the Soret effect and a constant heat source, is analyzed and solved in 

closed form using the Regular Perturbation method. This study investigates the interplay 

between thermal and solutal buoyancy forces, surface tension gradients, and the Soret-driven 

mass diffusion on the stability and dynamics of the system. 

The following conclusions are drawn: 

1. Effect of increasing the values of ratio of solute to thermal diffusivity ,solute diffusivity 

and solute Rayleigh number increase the critical Rayleigh number.  Consequently, it 

stabilizes the onset of double diffusive Rayleigh Benard Marangoni convection with 

constant heat source. 

2. Effect of increasing the values of solute Marangoni number and thermal Marangoni 

number increases the critical Rayleigh number.  Consequently,  it stabilizes the onset 

of double diffusivity Rayleigh Benard Marangoni convection with constant heat source. 
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3. Effect of increasing the values of soret number decreases critical Rayleigh number.   

Consequently, it destabilizes the onset of double diffusive Rayleigh Benard Marangoni 

convection with constant heat source. 

4. Effect of increasing the values of internal Rayleigh number decreases critical Rayleigh 

number. Consequently, it destabilizes the onset of double diffusive Rayleigh Benard 

Marangoni convection with constant heat source. 
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