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Abstract:  Sequence alignment is a crucial procedure in bioinformatics, facilitating the comparison 

and study of DNA and protein sequences for evolutionary and functional investigations. The growing 

amount and complexity of genomic datasets pose considerable computational problems for 

conventional CPU-based alignment techniques. This study presents an improved parallel computing 

framework that combines Central Processing Units (CPUs) and Graphics Processing Units (GPUs) 

with NVIDIA’s Unified Memory (UM) architecture to enhance the efficiency of DNA sequence 

alignment operations. The suggested method utilizes the extensive parallelism of GPUs while 

ensuring effective memory management via UM, thus reducing data transfer overhead between the 

host and the device. Experimental results indicate a significant enhancement in execution speed and 

computational efficiency relative to traditional sequential methods. The results validate that hybrid 

CPU-GPU processing, augmented by Unified Memory, offers a scalable and high-performance 

solution for contemporary bioinformatics applications necessitating intense sequence analysis. 

Keywords: Parallel Computing, Unified Memory, Sequence Alignment, Dynamic Programming, 

CUDA Optimization. 

 
  

1. INTRODUCTION 

Recently, bioinformatics has emerged as a prominent subject within computer science, 

providing extensive insights into biology and human-related information. The primary 

challenge in bioinformatics is computational biology, which necessitates the application of 

mathematics, computer science, and engineering to address this issue [1] .  The researchers 

engage in numerous bioinformatics domains, including motif recognition [2] and sequence 

alignments, due to the significant relevance of this discipline today, with many scholars from 

diverse fields focusing on motif discovery and next-generation sequencing [3]. 

Due to the large and complex nature of biology data, many biologists have turned to modern 

technologies and computer science to analyze and understand it [4]. Bioinformatics focuses on 

the development of computation processes and software tools to achieve this goal. Many studies 

use bioinformatics for broad goals, whereas others use sequence alignments. Sequence 

alignments compare or assess string similarity. Text comparison has been employed in several 

amino acid and protein research. Three sequence types are seen in biological sequences [5].  
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a) DNA string consists of four letters (A, C, G, and T).  

b) RNA string has four letters (A, C, G, and U).  

c) The protein string has the following letters: A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, 

S, T, W, Y, V.  

Biology data research uses high-quality algorithms to ensure comparison accuracy and proper 

results. Thus, several researchers adopted these sequence alignment techniques to improve 

comparison and similarity operations. They improved sequence alignment execution time with 

high-performance computing. Numerous experts in the domain of textual comparison have 

developed several mathematical matrices for quantifying similarities, referred to as edit distance 

methods. For instance, the Levenshtein edit distance algorithm [6], the Needleman-Wunsch 

algorithm (NW) [7], and the Smith-Waterman algorithm (SW) [8]. These algorithms are the 

most prevalent for computing sequence alignment for textual or biological sequences (DNA, 

RNA, and proteins). 

The accuracy of sequence alignment algorithms has been the subject of much research in the 

past 30 years, leading to numerous updates that have helped refine similarity and difference 

calculations [9]. Contrarily, researchers aimed to enhance the performance of sequence 

alignment algorithms by utilizing newly developed technology.  

Finding suitable methods to analyze big data, like cloud computing, high-performance 

computing, and parallel programming, has recently become vital with the emergence of big 

data. Our study's goals are to (1) increase the speed of sequence alignment algorithms while 

keeping similarity calculations accurate and (2) achieve the same results more quickly by 

making use of current technologies associated with Graphics Processing Units (GPUs) that 

enable parallel programming. This document comprises the following sections:  The second 

section will address the background of the algorithms and contemporary technology, followed 

by a review of prior research in this domain. Subsequently, we will outline the methodology 

employed in this study, present and analyze the results, and conclude with a discussion on future 

work. 

 

2. BACKGROUND AND TECHNICAL FOUNDATIONS  

A.  Dynamic Programming Algorithms for Sequence Alignment 

An approach to dynamic programming that simplifies large problems by breaking them down 

into smaller ones, solving each one separately, and then integrating the results to form a final 

solution.  The ideal alignment solution is provided by the dynamic programming approach for 

sequence alignment, although it takes a long time to execute for very large sequences.  To take 

use of new hardware and technology in a variety of computer activities, researchers had to resort 

to employing alternative approaches for aligning sequences.  Here we'll take a look at the inner 
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workings of three different dynamic programming methods commonly employed for sequence 

alignments.   

The Levenshtein technique calculates the edit distance between two sequences to determine 

their resemblance, utilizing three cells in the matrix: left, upper, and upper left, to derive the 

minimal value [6]. The Levenshtein algorithm operates as demonstrated in Equation 1, and 

Equation 2 is employed to compute the enhanced iteration of the method. 

 

𝐻[𝑖. 𝑗] = {

min(𝑖 − 1. 𝑗 − 1) +  𝑠𝑐𝑜𝑟𝑒    

min(𝑖. 𝑗 − 1) + 1

min(𝑖 − 1. 𝑗) + 1

……………(1) 

 

𝐻[𝑖. 𝑗] =

{
 
 
 

 
 
 

{
 

 
min(𝑖 − 1. 𝑗 − 1) +  𝑠𝑐𝑜𝑟𝑒    

min(𝑖. 𝑗 − 1) + 1

min(𝑖 − 1. 𝑗) + 1

min(𝑖 − 2. 𝑗 − 2) + 1

𝑖𝑓(𝑖. 𝑗 > 1 𝑎𝑛𝑑 𝐴𝑖 = 𝐵𝑗 − 1 𝑎𝑛𝑑 𝐴𝑖 − 1 =  𝐵𝑗)

{

min(𝑖 − 1. 𝑗 − 1) +  𝑠𝑐𝑜𝑟𝑒    

min(𝑖. 𝑗 − 1) + 1

min(𝑖 − 1. 𝑗) + 1

                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       …… (2) 

 

 

An intelligent algorithm minimizes the extensive array of possibilities that must be evaluated, 

while still ensuring the discovery of the ideal answer.  The Needleman-Wunsch (NW) algorithm 

is a dynamic programming technique that employs a divide-and-conquer approach.  The NW 

algorithm decomposes the sequence alignment problem into smaller sub-problems, solving each 

individually and utilizing their solutions to generate an optimal resolution for the original 

problem [7]. 

𝐻[𝑖. 𝑗] = {

max(𝑖 − 1. 𝑗 − 1) +  𝑠𝑐𝑜𝑟𝑒    

max(𝑖. 𝑗 − 1) + 𝐺𝑎𝑝
𝑚𝑎𝑥(𝑖 − 1. 𝑗) + 𝐺𝑎𝑝

. . . . . . . . . . . . . . . (3) 

 

In 1981, T. F. Smith and M. S. Waterman [8] created a method to calculate the similarity of 

sequences using the Needleman-Wunsch algorithm. The S-W Algorithm is a dynamic 

programming method that calculates the similarity of sequences of any length and position 

within any sequence, and assesses the feasibility of achieving an optimal alignment.  The Smith-

Waterman (SW) alignment is referred to as a local alignment, as defined by Equation 4. 
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𝐻[𝑖. 𝑗] =

{
 

 
max(𝑖 − 1. 𝑗 − 1) +  𝑠𝑐𝑜𝑟𝑒    

max(𝑖. 𝑗 − 1) + 𝐺𝑎𝑝

max(𝑖 − 1. 𝑗) + 𝐺𝑎𝑝
max( 0 )

……………(4) 

  

B. Parallel Computing and GPU Architectures 

Parallel computing is a computational methodology that simultaneously executes several 

instructions and can decompose complex problems into smaller, concurrently solvable 

components [10]. This computational approach reduces the complexity and execution time of 

numerous algorithms. There exist four categories of parallel computing: Single Instruction 

Single Data (SISD), Single Instruction Multiple Data (SIMD), Multiple Instruction Single Data 

(MISD), and Multiple Instruction Multiple Data (MIMD). Our study concentrates on addressing 

issues involving extensive data that require uniform processing, hence we employed SIMD 

parallel computing.  

In numerous algorithms, various functions can manipulate data concurrently without impacting 

other operations or data [11]. Numerous manufacturers, including Intel and AMD, create new 

hardware that supports parallel computing. Develop new iterations of Control Process Units 

(CPUs) including multi-core architectures to enhance the performance of contemporary 

systems; for instance, dual-core processors exhibit a 60% increase in speed compared to single-

core counterparts [12]. 

Graphics Processing Unit (GPU) devices are now supported by NVIDIA. This can work with 

SIMD because it generates thousands of threads, each of which can process a separate data item 

using the same command [13].  The GPU and CPU have varying numbers of cores, as seen in 

Figure 1. By utilizing NVIDIA GPU devices, developers and programmers are able to take 

advantage of the parallel computing environment known as Compute Unified Device 

Architecture (CUDA). As illustrated in Figure 2, CUDA threads are structured as sets called 

warps. A single block is made up of a set of warps, and several blocks can be placed in a single 

grid [11]. 
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Figure 1 shows the difference number of cores between the GPU and CPU 

 

 

Figure 2 Organization threads in CUDA 

However, parallel computing faces various obstacles, including memory management, data 

transfer (Host to Device or Device to Host), and GPU data type.  No double data type, float data 

type size, etc.  We measured the Machine epsilon of our hardware and determined that float in 

GPU float = 1.000001E-37 and on CPU = 1.401298E-42). For this reason, programmers must 

transfer double and float data carefully.  In addition, GPUs are not always better than CPUs.  

Data transfer delays (H to D or D to H) can take longer than CPU execution [14].  Some data-

dependent functions, including finding the matrix's maximum and minimum values, cannot be 

done in parallel because they must synchronize threads.  Thus, developers must use a CPU-

GPU hybrid platform [15]. Recently, several academics have used GPUs to accelerate image 

processing, bioinformatics, and other computer science applications.  GPU hardware is also 

developed constantly.  Integrated memory after this advancement. 

In CUDA toolkit 6, invidia supports new technology (Unified memory) to save time spent on 

CudaMemCpy() and enable programmers write code clearly [16]. Unified memory is shared 
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across the host (CPU) and device (GPU) and available for both CPU and GPU. Managed 

memory is CPU memory while the thread is executed in the host and GPU memory when it is 

executed in the GPU [17]. This approach gives CUDA programmers a new perspective on 

memory. Before unified memory, the programmer must utilize cudaMalloc(), cudaMemCpy(), 

and cudafree(). First, cudaMalloc allocated GPU memory, and then cudaMemCpy transferred 

data between host and device. Finally, cudafree() deallocates memory, but when using UM, the 

programmer needs two functions: cudaMallocManaged() to allocate memory and cudafree() to 

deallocate memory. To obtain high-speed computing for string matching algorithms, we suggest 

utilizing new approaches like UM for parallel programming. We then compare the algorithms' 

performance outcomes using CPU, GPU, and UM GPU. 

 

3. RELATED WORK ON PARALLEL SEQUENCE ALIGNMENT 

The primary challenge of sequence alignment is the computational alignment of lengthy and 

intricate biological sequences. This issue likely originated in 1966 with the concept of edit 

distance between two strings [18]. Edit distance quantifies the similarity between two strings 

by three operations: insertions, deletions, and replacements. Because dynamic programming 

algorithms are computationally expensive and dependent on sequence length, they are often 

referred to as quadratic algorithms. The advent of big data and next-generation sequencing 

(NGS) has significantly increased their cost [19]. It is known that algorithms that find the ideal 

solution after investigating all conceivable possibilities are expensive and time-consuming. 

Thus, several researchers have lowered execution time using parallel programming and 

innovative technologies like [20] [21]. In this research, we will employ the same strategy to 

speed up dynamic programming algorithms for sequence alignments and focus on three popular 

DNA sequence alignment algorithms: Wagner-Fischer, Needleman-Wunsch, and Smith-

Waterman. 

Aligning strings and assessing string similarity are common challenges solved by dynamic 

programming. Distributing a huge problem into subproblems and solving them progressively is 

a key principle of dynamic programming [22]. Two of the most typical difficulties of dynamic 

programming techniques are memory fullness and execution time. Thus, many uses greedy 

algorithms and other methods.  

Bioinformatics challenges including sequence alignment, motif identification, RNA structure 

prediction, and protein-DNA interaction are solved via dynamic programming [22]. 

Researchers compared DNA and protein sequences using dynamic programming methods. A 

compilation of prior research is shown in Table 1. 
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Table1: Different techniques applied by the researchers 

Author Ref. Technique Year Speedup 

Bani Baker and et al [23] parallel computing to speedup NW algorithm. 2024 4X 

Makino and et al  [24] parallel CPU OpenMP to speedup SW algorithm 2024 1.9X 

Balhaf and et al   [25] 
Used   GPUs   parallel implementation to 
accelerate edit distance algorithm. 

2016 11X 

Al-Hussien and et al [26] 
Parallel computing to speedup NW pairwise 
sequencing using CPU threads. 

2018 4X 

Kurt and et al [22] 
Used   GPUs   parallel implementation to 
accelerate Needleman Wunch algorithm. 

2022 17X 

Schmidt and et al [27] 
(GPU) CUDA parallel implementation to 
accelerate Smith-Waterman algorithm. 

2024 7X 

Fakirah and et al [28] 
CUDA parallel implementation to accelerate 
Needleman-Wunsch global alignment. 

2015 4X 

Bahig and et al [29] 
parallel CPU OpenMP implementation to 
accelerate Smith-Waterman algorithm. 

2024 3X 

 

4. PROPOSED METHODOLOGY 

The first of our four parts deals with sequential implementation using the central processing 

unit.  Second, in order to implement OpenMP in parallel, we used a CPU.  Additionally, we 

proceeded by running CUDA in parallel on a graphics processing unit (GPU).  Unified Memory 

also allows us to take use of the unique design of modern GPUs. 

 

a) Sequential CPU Implementation 

We perform sequential operations within the CPU.  Algorithm 1 delineates our CPU 

implementation, and we utilized Equation 5 to convert the 2D matrix into a 1D array.  Equations 

6 and 7 are utilized to convert the one-dimensional matrix into a two-dimensional matrix. The 

fundamental concern of dynamic algorithms is their dependence on data, as demonstrated in 

Figure 6. Calculate the H(I,j) cell utilizing the left cell, the upper cell, and the diagonal upper-

left cell.  

 

𝐼𝑛𝑑𝑒𝑥 =  𝑅𝑜𝑤 ∗  𝑛 +  𝑐𝑜𝑙𝑢𝑚𝑛   . . . . . . . . .  (5)     

𝑅𝑜𝑤 =
𝑖𝑛𝑑𝑒𝑥

𝑛
   . . . . . . . .  (6) 

𝐶𝑜𝑙𝑢𝑚𝑛 = index % n   . . . . . . . .  (7) 
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Algorithm 1 : CPU Sequential Implementation 

1: i ← 0 , j ← 0 

2: while (i < n − 1) do 
3: H( i , 0 ) = - i 
4: end while 

5: while (j < n − 1) do 
6: H( 0 , j ) = - j 
7: end while 

8: for i = 0 → n − 1 do 
9: for j = 0 → n − 1 do 

10: if Ai − 1 == Bj − 1 then 
11: Score = 1 
12: else 

13: Score = −1 
14: end if 
15:     Calc ulateHi, j using equations 1 and 2 for the Levenshtein algorithm 

16:    CalculateHi, j using equation 3 for the Needleman-Wunsch algorithm 
17:    CalculateHi, j using equation 4 for the Smith-Waterman algorithm 
18: end for 
 19: end for 

 

b) Parallel CPU Implementation Using OpenMP 

The principal challenge in utilizing parallel computing with single-instruction multiple-data 

(SIMD) is data dependency. To address this issue, we utilized a diagonal approach in calculating 

the matrix of the sequence alignment algorithms displayed in figure 3. In our second way, we 

utilized an OpenMP strategy to reduce the extended execution time, especially when the chain 

size is considerably huge. The measurable diameter concurrently increases. This notion is 

termed data independence. In concurrent OpenMP programming, we employed all available 

CPU resources, particularly 8 threads, according to our hardware specifications. The CPU 

computes the quantity of elements to be processed concurrently for the current iteration and 

adjusts the memory block sizes. The block size is determined using the slide ID through the 

subsequent by equations 8 and 9. 

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 =  𝑠𝑙𝑖𝑑𝑒𝐼𝐷 −  2 ∗  𝑍 +  1   . . . . . . . . .  (8) 

𝐻[𝑖. 𝑗] = {
0                                       𝑖𝑓 𝑠𝑙𝑖𝑑𝑒𝐼𝐷 <  𝑛

𝑠𝑙𝑖𝑑𝑒𝐼𝐷 −  𝑛 +  1        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       . . . . . .  (9)  
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                      (a)                                              (b)  

Figure 3:  Address dependency problem. (a) data 

dependency problem. (b) diagonal technique in matrix 
  

Algorithm 2: CPU OpenMP Implementation 

1:  i ← 0 , j ← 0 

2:  while (i < n − 1) do 

3: H( i , 0 ) = 0 

4:  end while 

5:  while (j < n − 1) do 

6: H( 0 , j ) =0 

7:  end while 

8:  for slide = 0 → n ∗ 2 − 1 do 

9: if slide < n then 

10: z = 0 

11: else 

12: Z = Slide − n + 1 

13: end if 

14: blocksize = slide − 2 ∗ Z + 1 

15:   #pragma OpenMP Calculate Hi, j equations 1 and 2 for the Levenshtein algorithm 

16:   #pragma OpenMP Calculate Hi, j equation 3 for the Needleman-Wunsch algorithm 

17:  #pragma OpenMP Calculate Hi, j equation 4 for the Smith-Waterman algorithm 

 16: end for 

 

c)  GPU-Based Implementation Using CUDA 

This section will employ a GPU as the hardware device because of its multitude of cores relative 

to CPU cores.  Figure 1 depicts the architecture of the CPU and GPU.  The Compute Unified 

Device Architecture (CUDA) is a parallel computing architecture that allows developers to 

utilize NVIDIA GPU devices.  In CUDA, threads are organized into warps, numerous warps 

create a block, and several blocks constitute a grid. 

 The principal obstacle in employing parallel computing for single structure numerous data is 

data dependency.  To address this issue, we utilized an antidiagonal method in the computation 

of the matrix for the sequence alignment algorithms.  Figure 6 demonstrates that.  Additionally, 

algorithm3 and algorithm4 illustrate our parallel implementation on the GPU employing CUDA 

programming tools. 
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 Algorithm 3: GPU parallel Implementation  

1:  i ← 0 ,  j ← 0 

2:  while (i < n − 1) do 

3: H( i , 0 ) = - i 

4:  end while 

5:  while (j < n − 1) do 

6: H(0 , j ) = - j 

7:  end while 

8:  for slide = 0 → n ∗ 2 − 1 do 

9: if slide < n then 

10: z = 0 

11: else  

12: Z = Slide − n + 1 

13: end if 

14: blocksize = slide − 2 ∗ Z + 1 

15: CUDA Sequence alignment algorithm <<< blocksize, 256 >>> 
 16:  end for  

 

Algorithm 4: CUDA Kernel algorithm 

1:  Calculate thread ID 

2:  if Z <= 0 then 

3: startindex = slide 

4:  else 

5: startindex = increment ∗ Z + slide 

6:  end if 

7:  Grid = startindex + (ID ∗ increment) 

8:  row = equation 6 

9:  column = equation 7 

10:  index = equation 5 

11:   Calculate Hi, j using equations 1 and 2 for the Levenshtein algorithm 

12:  Calculate Hi, j using equation 3 for the Needleman-Wunsch algorithm 

13:  Calculate Hi, j using equation 4 for the Smith-Waterman algorithm 

  

d) GPU Implementation with CUDA Unified Memory 

With the introduction of Unified Memory in CUDA Toolkit 6, NVIDIA hopes to reduce the 

amount of time the cudaMemcpy() function takes and make programming easier and more 

understandable. In a Unified Memory setup, the host CPU and the device GPU share memory. 

When working on a host computer, managed memory is known as CPU memory; when running 

on a device, it is known as GPU memory. A new way of looking at memory in CUDA code is 

given to the developer by this method. The three procedures cudaMalloc(), cudaMemcpy(), and 

cudaFree() were used by the programmer before unified memory was implemented . The first 

step was to use cudaMalloc to allocate GPU memory, and then cudaMemcpy to transfer data 

from the host to the device. utilize cudaFree() to deallocate memory. However, when using 
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unified memory (UM), the programmer needs to utilize two functions: cudaMallocManaged() 

to allocate memory and cudaFree() to deallocate it. That is seen in Figure 4. 

 
Figure 4 CUDA Unified Memory 

 

5. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 

This section presents and discusses the results achieved from the acceleration of three 

algorithms: the Levenshtein algorithm, the Needleman-Wunsch method, and the Smith-

Waterman algorithm. This section delineates the results of our concurrent implementations.  

The aim is to determine the extent of speedup for scalable data sizes.  DNA sequences varying 

in length from 15 KB to a maximum of 45 KB.  Five unique tests are conducted for each size, 

and the averages are recorded.  The acceleration is ascertained utilizing Equation 10.  

Experiments demonstrate that dynamic method computing is affected by the increase in 

sequence sizes during the sequential execution of sequence alignment methods.  Thus, parallel 

computing with OpenMP reduces execution time, especially when employing several CPU 

cores.  The following table presents the appropriate number of cores compatible with the device 

utilized in this study. 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐶𝑃𝑈 𝑡𝑖𝑚𝑒

𝐺𝑃𝑈 𝑡𝑖𝑚𝑒
                                    (10) 

 

Table 2: shows execution time for different number of OpenMP threads. 

 

 

 

Figure 5 illustrates the outcomes of our investigation. The efficacy of the CPU implementation 

declines with increasing sequence length. In contrast, the GPU does not exert an effect. 

Furthermore, Figure 6 depicts the duration of data transmission between the host (CPU) and the 

OpenMP Sequence size= 8KB 

# of threads 2 4 8 16 32 

Time execution 1.165 0.708 0.604 0.799 0.943 
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device (GPU). We utilized UM to reduce execution time. Figure 5 illustrates our results on the 

execution durations of CPU, GPU, and GPU with Unified Memory (UM). Figure 7 

demonstrates the improvements attained through the use of GPU and GPU with UM for the 

Smith-Waterman algorithm, and, Figure 8 and Figure 9 show the execution time and 

performance improvements as results of Needleman-Wunch. Also. Figure 10 and 11 show the 

results of Wagner-Fischer algorithm. 

 

Figure 5 Execution time for Smith-Waterman algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Time of Data Transfer and time of computation  
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Figure 7: Improvement Compared to CPU Implementation for Smith-Waterman 

 

Figure 8: Execution time for Needleman-Wunch algorithm 

 

 
Figure 9: Improvement Compared to CPU Implementation for Needleman-Wunch 
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Figure 8: Execution time for Wagner-Fischer algorithm 

 
Figure 11: Improvement Compared to CPU Implementation for 

Wagner-Fischer algorithm. 

The results indicate that memory was influenced by both the size of the graphics card memory 

and the larger chain size, as well as the unified memory space, which is approximately 8 GB in 

this device, whereas the memory size of the graphics processing units (GPUs) is only 6 GB, 

significantly affecting the percentage of improvements. 

 

6. CONCLUSIONS AND FUTURE WORK 

Bioinformatics is a discipline intrinsically linked to people, with DNA sequence alignment 

serving as a pivotal topic within the field. This work employed three established techniques for 

calculating the similarity and alignment of DNA sequences: the Needleman-Wunsch algorithm, 

the Smith-Waterman algorithm, and the Wagner-Fischer algorithm. The growing sophistication 

of technology has significantly enhanced our advantages, especially in computer hardware, 

characterized by an increasing number of cores in CPUs, GPUs, and shared memory. The 

CUDA programming language was employed as a parallel programming tool to enhance the 

computation of the previously discussed methods. 
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The outcomes were extraordinary, with rates escalating up to three times when using parallel 

programming, utilizing the cores of contemporary CPUs. This value increased by almost 30 

times when employing parallel programming, leveraging the GPU's core count. Moreover, the 

efficiency improved by over 100-fold relative to sequential execution by utilizing shared 

memory and obviating the necessity for data transmission between the CPU and GPU. Future 

work will focus on extending the proposed approach to multiple GPU configurations and 

exploring its applicability to RNA and protein sequence alignment. 
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