

Enhancing DNA Sequence Alignment Using Parallel CPU–GPU

Computing with Unified Memory

Mohammed Fadhl Abdullah1,2, Khaled Hassan Mahdi Balhaf1,3

1 College of Engineering and Computing, University of Science and Technology, Aden, Yemen
2m.albadwi@ust.edu, 3khaledbalhaf2021@gmail.com

Abstract: Sequence alignment is a crucial procedure in bioinformatics, facilitating the comparison

and study of DNA and protein sequences for evolutionary and functional investigations. The growing

amount and complexity of genomic datasets pose considerable computational problems for

conventional CPU-based alignment techniques. This study presents an improved parallel computing

framework that combines Central Processing Units (CPUs) and Graphics Processing Units (GPUs)

with NVIDIA’s Unified Memory (UM) architecture to enhance the efficiency of DNA sequence

alignment operations. The suggested method utilizes the extensive parallelism of GPUs while

ensuring effective memory management via UM, thus reducing data transfer overhead between the

host and the device. Experimental results indicate a significant enhancement in execution speed and

computational efficiency relative to traditional sequential methods. The results validate that hybrid

CPU-GPU processing, augmented by Unified Memory, offers a scalable and high-performance

solution for contemporary bioinformatics applications necessitating intense sequence analysis.

Keywords: Parallel Computing, Unified Memory, Sequence Alignment, Dynamic Programming,

CUDA Optimization.

1. INTRODUCTION

Recently, bioinformatics has emerged as a prominent subject within computer science,

providing extensive insights into biology and human-related information. The primary

challenge in bioinformatics is computational biology, which necessitates the application of

mathematics, computer science, and engineering to address this issue [1] . The researchers

engage in numerous bioinformatics domains, including motif recognition [2] and sequence

alignments, due to the significant relevance of this discipline today, with many scholars from

diverse fields focusing on motif discovery and next-generation sequencing [3].

Due to the large and complex nature of biology data, many biologists have turned to modern

technologies and computer science to analyze and understand it [4]. Bioinformatics focuses on

the development of computation processes and software tools to achieve this goal. Many studies

use bioinformatics for broad goals, whereas others use sequence alignments. Sequence

alignments compare or assess string similarity. Text comparison has been employed in several

amino acid and protein research. Three sequence types are seen in biological sequences [5].

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page192

mailto:m.albadwi@ust.edu
mailto:khaledbalhaf2021@gmail.com

a) DNA string consists of four letters (A, C, G, and T).

b) RNA string has four letters (A, C, G, and U).

c) The protein string has the following letters: A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P,

S, T, W, Y, V.

Biology data research uses high-quality algorithms to ensure comparison accuracy and proper

results. Thus, several researchers adopted these sequence alignment techniques to improve

comparison and similarity operations. They improved sequence alignment execution time with

high-performance computing. Numerous experts in the domain of textual comparison have

developed several mathematical matrices for quantifying similarities, referred to as edit distance

methods. For instance, the Levenshtein edit distance algorithm [6], the Needleman-Wunsch

algorithm (NW) [7], and the Smith-Waterman algorithm (SW) [8]. These algorithms are the

most prevalent for computing sequence alignment for textual or biological sequences (DNA,

RNA, and proteins).

The accuracy of sequence alignment algorithms has been the subject of much research in the

past 30 years, leading to numerous updates that have helped refine similarity and difference

calculations [9]. Contrarily, researchers aimed to enhance the performance of sequence

alignment algorithms by utilizing newly developed technology.

Finding suitable methods to analyze big data, like cloud computing, high-performance

computing, and parallel programming, has recently become vital with the emergence of big

data. Our study's goals are to (1) increase the speed of sequence alignment algorithms while

keeping similarity calculations accurate and (2) achieve the same results more quickly by

making use of current technologies associated with Graphics Processing Units (GPUs) that

enable parallel programming. This document comprises the following sections: The second

section will address the background of the algorithms and contemporary technology, followed

by a review of prior research in this domain. Subsequently, we will outline the methodology

employed in this study, present and analyze the results, and conclude with a discussion on future

work.

2. BACKGROUND AND TECHNICAL FOUNDATIONS

A. Dynamic Programming Algorithms for Sequence Alignment

An approach to dynamic programming that simplifies large problems by breaking them down

into smaller ones, solving each one separately, and then integrating the results to form a final

solution. The ideal alignment solution is provided by the dynamic programming approach for

sequence alignment, although it takes a long time to execute for very large sequences. To take

use of new hardware and technology in a variety of computer activities, researchers had to resort

to employing alternative approaches for aligning sequences. Here we'll take a look at the inner

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page193

workings of three different dynamic programming methods commonly employed for sequence

alignments.

The Levenshtein technique calculates the edit distance between two sequences to determine

their resemblance, utilizing three cells in the matrix: left, upper, and upper left, to derive the

minimal value [6]. The Levenshtein algorithm operates as demonstrated in Equation 1, and

Equation 2 is employed to compute the enhanced iteration of the method.

𝐻[𝑖. 𝑗] = {

min(𝑖 − 1. 𝑗 − 1) + 𝑠𝑐𝑜𝑟𝑒

min(𝑖. 𝑗 − 1) + 1

min(𝑖 − 1. 𝑗) + 1

……………(1)

𝐻[𝑖. 𝑗] =

{

{

min(𝑖 − 1. 𝑗 − 1) + 𝑠𝑐𝑜𝑟𝑒

min(𝑖. 𝑗 − 1) + 1

min(𝑖 − 1. 𝑗) + 1

min(𝑖 − 2. 𝑗 − 2) + 1

𝑖𝑓(𝑖. 𝑗 > 1 𝑎𝑛𝑑 𝐴𝑖 = 𝐵𝑗 − 1 𝑎𝑛𝑑 𝐴𝑖 − 1 = 𝐵𝑗)

{

min(𝑖 − 1. 𝑗 − 1) + 𝑠𝑐𝑜𝑟𝑒

min(𝑖. 𝑗 − 1) + 1

min(𝑖 − 1. 𝑗) + 1

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 …… (2)

An intelligent algorithm minimizes the extensive array of possibilities that must be evaluated,

while still ensuring the discovery of the ideal answer. The Needleman-Wunsch (NW) algorithm

is a dynamic programming technique that employs a divide-and-conquer approach. The NW

algorithm decomposes the sequence alignment problem into smaller sub-problems, solving each

individually and utilizing their solutions to generate an optimal resolution for the original

problem [7].

𝐻[𝑖. 𝑗] = {

max(𝑖 − 1. 𝑗 − 1) + 𝑠𝑐𝑜𝑟𝑒

max(𝑖. 𝑗 − 1) + 𝐺𝑎𝑝
𝑚𝑎𝑥(𝑖 − 1. 𝑗) + 𝐺𝑎𝑝

. (3)

In 1981, T. F. Smith and M. S. Waterman [8] created a method to calculate the similarity of

sequences using the Needleman-Wunsch algorithm. The S-W Algorithm is a dynamic

programming method that calculates the similarity of sequences of any length and position

within any sequence, and assesses the feasibility of achieving an optimal alignment. The Smith-

Waterman (SW) alignment is referred to as a local alignment, as defined by Equation 4.

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page194

𝐻[𝑖. 𝑗] =

{

max(𝑖 − 1. 𝑗 − 1) + 𝑠𝑐𝑜𝑟𝑒

max(𝑖. 𝑗 − 1) + 𝐺𝑎𝑝

max(𝑖 − 1. 𝑗) + 𝐺𝑎𝑝
max(0)

……………(4)

B. Parallel Computing and GPU Architectures

Parallel computing is a computational methodology that simultaneously executes several

instructions and can decompose complex problems into smaller, concurrently solvable

components [10]. This computational approach reduces the complexity and execution time of

numerous algorithms. There exist four categories of parallel computing: Single Instruction

Single Data (SISD), Single Instruction Multiple Data (SIMD), Multiple Instruction Single Data

(MISD), and Multiple Instruction Multiple Data (MIMD). Our study concentrates on addressing

issues involving extensive data that require uniform processing, hence we employed SIMD

parallel computing.

In numerous algorithms, various functions can manipulate data concurrently without impacting

other operations or data [11]. Numerous manufacturers, including Intel and AMD, create new

hardware that supports parallel computing. Develop new iterations of Control Process Units

(CPUs) including multi-core architectures to enhance the performance of contemporary

systems; for instance, dual-core processors exhibit a 60% increase in speed compared to single-

core counterparts [12].

Graphics Processing Unit (GPU) devices are now supported by NVIDIA. This can work with

SIMD because it generates thousands of threads, each of which can process a separate data item

using the same command [13]. The GPU and CPU have varying numbers of cores, as seen in

Figure 1. By utilizing NVIDIA GPU devices, developers and programmers are able to take

advantage of the parallel computing environment known as Compute Unified Device

Architecture (CUDA). As illustrated in Figure 2, CUDA threads are structured as sets called

warps. A single block is made up of a set of warps, and several blocks can be placed in a single

grid [11].

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page195

Figure 1 shows the difference number of cores between the GPU and CPU

Figure 2 Organization threads in CUDA

However, parallel computing faces various obstacles, including memory management, data

transfer (Host to Device or Device to Host), and GPU data type. No double data type, float data

type size, etc. We measured the Machine epsilon of our hardware and determined that float in

GPU float = 1.000001E-37 and on CPU = 1.401298E-42). For this reason, programmers must

transfer double and float data carefully. In addition, GPUs are not always better than CPUs.

Data transfer delays (H to D or D to H) can take longer than CPU execution [14]. Some data-

dependent functions, including finding the matrix's maximum and minimum values, cannot be

done in parallel because they must synchronize threads. Thus, developers must use a CPU-

GPU hybrid platform [15]. Recently, several academics have used GPUs to accelerate image

processing, bioinformatics, and other computer science applications. GPU hardware is also

developed constantly. Integrated memory after this advancement.

In CUDA toolkit 6, invidia supports new technology (Unified memory) to save time spent on

CudaMemCpy() and enable programmers write code clearly [16]. Unified memory is shared

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page196

across the host (CPU) and device (GPU) and available for both CPU and GPU. Managed

memory is CPU memory while the thread is executed in the host and GPU memory when it is

executed in the GPU [17]. This approach gives CUDA programmers a new perspective on

memory. Before unified memory, the programmer must utilize cudaMalloc(), cudaMemCpy(),

and cudafree(). First, cudaMalloc allocated GPU memory, and then cudaMemCpy transferred

data between host and device. Finally, cudafree() deallocates memory, but when using UM, the

programmer needs two functions: cudaMallocManaged() to allocate memory and cudafree() to

deallocate memory. To obtain high-speed computing for string matching algorithms, we suggest

utilizing new approaches like UM for parallel programming. We then compare the algorithms'

performance outcomes using CPU, GPU, and UM GPU.

3. RELATED WORK ON PARALLEL SEQUENCE ALIGNMENT

The primary challenge of sequence alignment is the computational alignment of lengthy and

intricate biological sequences. This issue likely originated in 1966 with the concept of edit

distance between two strings [18]. Edit distance quantifies the similarity between two strings

by three operations: insertions, deletions, and replacements. Because dynamic programming

algorithms are computationally expensive and dependent on sequence length, they are often

referred to as quadratic algorithms. The advent of big data and next-generation sequencing

(NGS) has significantly increased their cost [19]. It is known that algorithms that find the ideal

solution after investigating all conceivable possibilities are expensive and time-consuming.

Thus, several researchers have lowered execution time using parallel programming and

innovative technologies like [20] [21]. In this research, we will employ the same strategy to

speed up dynamic programming algorithms for sequence alignments and focus on three popular

DNA sequence alignment algorithms: Wagner-Fischer, Needleman-Wunsch, and Smith-

Waterman.

Aligning strings and assessing string similarity are common challenges solved by dynamic

programming. Distributing a huge problem into subproblems and solving them progressively is

a key principle of dynamic programming [22]. Two of the most typical difficulties of dynamic

programming techniques are memory fullness and execution time. Thus, many uses greedy

algorithms and other methods.

Bioinformatics challenges including sequence alignment, motif identification, RNA structure

prediction, and protein-DNA interaction are solved via dynamic programming [22].

Researchers compared DNA and protein sequences using dynamic programming methods. A

compilation of prior research is shown in Table 1.

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page197

Table1: Different techniques applied by the researchers

Author Ref. Technique Year Speedup

Bani Baker and et al [23] parallel computing to speedup NW algorithm. 2024 4X

Makino and et al [24] parallel CPU OpenMP to speedup SW algorithm 2024 1.9X

Balhaf and et al [25]
Used GPUs parallel implementation to
accelerate edit distance algorithm.

2016 11X

Al-Hussien and et al [26]
Parallel computing to speedup NW pairwise
sequencing using CPU threads.

2018 4X

Kurt and et al [22]
Used GPUs parallel implementation to
accelerate Needleman Wunch algorithm.

2022 17X

Schmidt and et al [27]
(GPU) CUDA parallel implementation to
accelerate Smith-Waterman algorithm.

2024 7X

Fakirah and et al [28]
CUDA parallel implementation to accelerate
Needleman-Wunsch global alignment.

2015 4X

Bahig and et al [29]
parallel CPU OpenMP implementation to
accelerate Smith-Waterman algorithm.

2024 3X

4. PROPOSED METHODOLOGY

The first of our four parts deals with sequential implementation using the central processing

unit. Second, in order to implement OpenMP in parallel, we used a CPU. Additionally, we

proceeded by running CUDA in parallel on a graphics processing unit (GPU). Unified Memory

also allows us to take use of the unique design of modern GPUs.

a) Sequential CPU Implementation

We perform sequential operations within the CPU. Algorithm 1 delineates our CPU

implementation, and we utilized Equation 5 to convert the 2D matrix into a 1D array. Equations

6 and 7 are utilized to convert the one-dimensional matrix into a two-dimensional matrix. The

fundamental concern of dynamic algorithms is their dependence on data, as demonstrated in

Figure 6. Calculate the H(I,j) cell utilizing the left cell, the upper cell, and the diagonal upper-

left cell.

𝐼𝑛𝑑𝑒𝑥 = 𝑅𝑜𝑤 ∗ 𝑛 + 𝑐𝑜𝑙𝑢𝑚𝑛 (5)

𝑅𝑜𝑤 =
𝑖𝑛𝑑𝑒𝑥

𝑛
 (6)

𝐶𝑜𝑙𝑢𝑚𝑛 = index % n (7)

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page198

Algorithm 1 : CPU Sequential Implementation

1: i ← 0 , j ← 0

2: while (i < n − 1) do
3: H(i , 0) = - i
4: end while

5: while (j < n − 1) do
6: H(0 , j) = - j
7: end while

8: for i = 0 → n − 1 do
9: for j = 0 → n − 1 do

10: if Ai − 1 == Bj − 1 then
11: Score = 1
12: else

13: Score = −1
14: end if
15: Calc ulateHi, j using equations 1 and 2 for the Levenshtein algorithm

16: CalculateHi, j using equation 3 for the Needleman-Wunsch algorithm
17: CalculateHi, j using equation 4 for the Smith-Waterman algorithm
18: end for
 19: end for

b) Parallel CPU Implementation Using OpenMP

The principal challenge in utilizing parallel computing with single-instruction multiple-data

(SIMD) is data dependency. To address this issue, we utilized a diagonal approach in calculating

the matrix of the sequence alignment algorithms displayed in figure 3. In our second way, we

utilized an OpenMP strategy to reduce the extended execution time, especially when the chain

size is considerably huge. The measurable diameter concurrently increases. This notion is

termed data independence. In concurrent OpenMP programming, we employed all available

CPU resources, particularly 8 threads, according to our hardware specifications. The CPU

computes the quantity of elements to be processed concurrently for the current iteration and

adjusts the memory block sizes. The block size is determined using the slide ID through the

subsequent by equations 8 and 9.

𝑏𝑙𝑜𝑐𝑘𝑠𝑖𝑧𝑒 = 𝑠𝑙𝑖𝑑𝑒𝐼𝐷 − 2 ∗ 𝑍 + 1 (8)

𝐻[𝑖. 𝑗] = {
0 𝑖𝑓 𝑠𝑙𝑖𝑑𝑒𝐼𝐷 < 𝑛

𝑠𝑙𝑖𝑑𝑒𝐼𝐷 − 𝑛 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (9)

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page199

 (a) (b)

Figure 3: Address dependency problem. (a) data

dependency problem. (b) diagonal technique in matrix

Algorithm 2: CPU OpenMP Implementation

1: i ← 0 , j ← 0

2: while (i < n − 1) do

3: H(i , 0) = 0

4: end while

5: while (j < n − 1) do

6: H(0 , j) =0

7: end while

8: for slide = 0 → n ∗ 2 − 1 do

9: if slide < n then

10: z = 0

11: else

12: Z = Slide − n + 1

13: end if

14: blocksize = slide − 2 ∗ Z + 1

15: #pragma OpenMP Calculate Hi, j equations 1 and 2 for the Levenshtein algorithm

16: #pragma OpenMP Calculate Hi, j equation 3 for the Needleman-Wunsch algorithm

17: #pragma OpenMP Calculate Hi, j equation 4 for the Smith-Waterman algorithm

 16: end for

c) GPU-Based Implementation Using CUDA

This section will employ a GPU as the hardware device because of its multitude of cores relative

to CPU cores. Figure 1 depicts the architecture of the CPU and GPU. The Compute Unified

Device Architecture (CUDA) is a parallel computing architecture that allows developers to

utilize NVIDIA GPU devices. In CUDA, threads are organized into warps, numerous warps

create a block, and several blocks constitute a grid.

 The principal obstacle in employing parallel computing for single structure numerous data is

data dependency. To address this issue, we utilized an antidiagonal method in the computation

of the matrix for the sequence alignment algorithms. Figure 6 demonstrates that. Additionally,

algorithm3 and algorithm4 illustrate our parallel implementation on the GPU employing CUDA

programming tools.

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page200

 Algorithm 3: GPU parallel Implementation

1: i ← 0 , j ← 0

2: while (i < n − 1) do

3: H(i , 0) = - i

4: end while

5: while (j < n − 1) do

6: H(0 , j) = - j

7: end while

8: for slide = 0 → n ∗ 2 − 1 do

9: if slide < n then

10: z = 0

11: else

12: Z = Slide − n + 1

13: end if

14: blocksize = slide − 2 ∗ Z + 1

15: CUDA Sequence alignment algorithm <<< blocksize, 256 >>>
 16: end for

Algorithm 4: CUDA Kernel algorithm

1: Calculate thread ID

2: if Z <= 0 then

3: startindex = slide

4: else

5: startindex = increment ∗ Z + slide

6: end if

7: Grid = startindex + (ID ∗ increment)

8: row = equation 6

9: column = equation 7

10: index = equation 5

11: Calculate Hi, j using equations 1 and 2 for the Levenshtein algorithm

12: Calculate Hi, j using equation 3 for the Needleman-Wunsch algorithm

13: Calculate Hi, j using equation 4 for the Smith-Waterman algorithm

d) GPU Implementation with CUDA Unified Memory

With the introduction of Unified Memory in CUDA Toolkit 6, NVIDIA hopes to reduce the

amount of time the cudaMemcpy() function takes and make programming easier and more

understandable. In a Unified Memory setup, the host CPU and the device GPU share memory.

When working on a host computer, managed memory is known as CPU memory; when running

on a device, it is known as GPU memory. A new way of looking at memory in CUDA code is

given to the developer by this method. The three procedures cudaMalloc(), cudaMemcpy(), and

cudaFree() were used by the programmer before unified memory was implemented . The first

step was to use cudaMalloc to allocate GPU memory, and then cudaMemcpy to transfer data

from the host to the device. utilize cudaFree() to deallocate memory. However, when using

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page201

unified memory (UM), the programmer needs to utilize two functions: cudaMallocManaged()

to allocate memory and cudaFree() to deallocate it. That is seen in Figure 4.

Figure 4 CUDA Unified Memory

5. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS

This section presents and discusses the results achieved from the acceleration of three

algorithms: the Levenshtein algorithm, the Needleman-Wunsch method, and the Smith-

Waterman algorithm. This section delineates the results of our concurrent implementations.

The aim is to determine the extent of speedup for scalable data sizes. DNA sequences varying

in length from 15 KB to a maximum of 45 KB. Five unique tests are conducted for each size,

and the averages are recorded. The acceleration is ascertained utilizing Equation 10.

Experiments demonstrate that dynamic method computing is affected by the increase in

sequence sizes during the sequential execution of sequence alignment methods. Thus, parallel

computing with OpenMP reduces execution time, especially when employing several CPU

cores. The following table presents the appropriate number of cores compatible with the device

utilized in this study.

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝐶𝑃𝑈 𝑡𝑖𝑚𝑒

𝐺𝑃𝑈 𝑡𝑖𝑚𝑒
 (10)

Table 2: shows execution time for different number of OpenMP threads.

Figure 5 illustrates the outcomes of our investigation. The efficacy of the CPU implementation

declines with increasing sequence length. In contrast, the GPU does not exert an effect.

Furthermore, Figure 6 depicts the duration of data transmission between the host (CPU) and the

OpenMP Sequence size= 8KB

of threads 2 4 8 16 32

Time execution 1.165 0.708 0.604 0.799 0.943

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page202

device (GPU). We utilized UM to reduce execution time. Figure 5 illustrates our results on the

execution durations of CPU, GPU, and GPU with Unified Memory (UM). Figure 7

demonstrates the improvements attained through the use of GPU and GPU with UM for the

Smith-Waterman algorithm, and, Figure 8 and Figure 9 show the execution time and

performance improvements as results of Needleman-Wunch. Also. Figure 10 and 11 show the

results of Wagner-Fischer algorithm.

Figure 5 Execution time for Smith-Waterman algorithm

Figure 6: Time of Data Transfer and time of computation

0.108
0.229 0.407 0.596 0.936 13.278 17.467

0.025
0.021 0.025 0.035 0.063 0.188 0.337

0%

20%

40%

60%

80%

100%

15KB * 15KB20KB * 20KB 25KB * 25
KB

30KB * 30KB35KB * 35KB40KB * 40KB45KB * 45KB

GPU Time consuming
TRNS time Compute

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page203

Figure 7: Improvement Compared to CPU Implementation for Smith-Waterman

Figure 8: Execution time for Needleman-Wunch algorithm

Figure 9: Improvement Compared to CPU Implementation for Needleman-Wunch

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page204

Figure 8: Execution time for Wagner-Fischer algorithm

Figure 11: Improvement Compared to CPU Implementation for

Wagner-Fischer algorithm.

The results indicate that memory was influenced by both the size of the graphics card memory

and the larger chain size, as well as the unified memory space, which is approximately 8 GB in

this device, whereas the memory size of the graphics processing units (GPUs) is only 6 GB,

significantly affecting the percentage of improvements.

6. CONCLUSIONS AND FUTURE WORK

Bioinformatics is a discipline intrinsically linked to people, with DNA sequence alignment

serving as a pivotal topic within the field. This work employed three established techniques for

calculating the similarity and alignment of DNA sequences: the Needleman-Wunsch algorithm,

the Smith-Waterman algorithm, and the Wagner-Fischer algorithm. The growing sophistication

of technology has significantly enhanced our advantages, especially in computer hardware,

characterized by an increasing number of cores in CPUs, GPUs, and shared memory. The

CUDA programming language was employed as a parallel programming tool to enhance the

computation of the previously discussed methods.

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page205

The outcomes were extraordinary, with rates escalating up to three times when using parallel

programming, utilizing the cores of contemporary CPUs. This value increased by almost 30

times when employing parallel programming, leveraging the GPU's core count. Moreover, the

efficiency improved by over 100-fold relative to sequential execution by utilizing shared

memory and obviating the necessity for data transmission between the CPU and GPU. Future

work will focus on extending the proposed approach to multiple GPU configurations and

exploring its applicability to RNA and protein sequence alignment.

References

[1]. S. A. Shehab, A. Keshk and H. Mahgoub, "Fast Dynamic Algorithm for Sequence Alignment,"
International Journal of Computer Applications, vol. 37, no. 7, p. 0975 – 8887, 2012.

[2]. M. K. Das and H.-K. Dai, "A survey of DNA motif finding algorithms," in Fourth Annual
MCBIOS Conference. Computational Frontiers in Biomedicine, New Orleans, LA, USA, 2007.

[3]. H. Li و N. Homer ،"A survey of sequence alignment algorithms for next-generation
sequencing،" BRIEFINGS IN BIOINFORMATICS. vol.5, no. 1, pp. 473- 483 2010 .

[4]. S. O. Ouda and M., "Next generation sequencing technologies and challenges in sequence
assembly," SPRINGER BRIEFS IN SYSTEMS BIOLOGY, 2014, p. 16–25.

[5]. W. Haque, A. Aravind and B. Reddy, "Pairwise Sequence Alignment Algorithms – A Survey,"
in ISTA '09' information science Technology and Applications, Kuwait, 2009.

[6]. V. Levenshtein, "Binary codes capable of correcting deletions, insertions, and reversals.," Soviet
Physics Doklady, vol. 10, p. 707–710, 1966.

[7]. S. Needleman and C. Wijnch, "A General Method Applicable to the Search for Similarities in
the Amino Acid Sequence of Two Proteins," JMol Biol, vols. 48, pp. 443-453, 1970.

[8]. T. F. SMITH and M. S. WATERMAN, "Identification of Common Molecular Subsequences,"
vol. 147, pp. 195-197, 1981.

[9]. K. M. M. Aung and N. Htwe, "Comparison of Levenshtein Distance Algorithm and Needleman-
Wunsch Distance Algorithm for String Matching," vol. 1, no. 1, pp. 209-2013, 2019.

[10]. G. S. Almasi and A. Gottlieb, Highly parallel computing, USA: ACM, 1989.

[11]. C. S, "CUDA Programming: A Developer's Guide to Parallel Computing with GPUs", USA,
Elsevire, 2012.

[12]. D. M. Pase and M. A. Eckl, "A Comparison of Single-Core and Dual-Core Opteron Processor
Performance for HPC," IBM xSeries Performance Development and Analysis., 2005.

[13]. C. Navarro, N. H. Kahler and L. Mateu, "A Survey on Parallel Computing and its Applications
in Data-Parallel Problems Using GPU Architectures," vol. 15, no. 2, pp. 285-329, 2014.

[14]. M. Pharr and R. Fernando, GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation (Gpu Gems), ACM, 2005.

[15]. A. Eklund, P. Dufort, D. Forsberg and S. M. LaConte, "Medical image processing on the GPU
- past, present and future.," Medical Image Analysis, vol. 17, no. 8, p. 22, 2013.

[16]. D. Negrut, R. Serban, A. Li and A. Seidl, "Unified Memory in CUDA 6: A Brief Overview and
Related Data Access/Transfer Issues," TR-2014-09, June 27, 2014.

[17]. K. H. Balhaf and M. F. Abdullah, "GPU-Driven Optimization of the Needleman-Wunsch
Algorithm for Fast DNA Sequence Alignment," in 11th International Conference on
Optimization and Applications (ICOA), Kenitra, Morocco, 2025.

[18]. S. Batzoglou, "The many faces of sequence alignment," Briefings in bioinformatics, vol. 6, no.
1, pp. 6-22, 2005.

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page206

[19]. G. E. Sims, S.-R. Jun, G. A. Wu and S.-H. Kim, "Alignment-free genome comparison with
feature frequency profiles (FFP) and optimal resolutions," PNAS, vol. 106, no. 8, p. 2677–2682,
2009.

[20]. M. Yano, H. Mori, Y. Akiyama, T. Yamada and K. Kurokawa, "CLAST: CUDA implemented
large-scale alignment search tool," BMC Bioinformatics, vol. 15, no. 406, pp. 1-14, 2014.

[21]. Q. Aguado-puig, S. Marco-sola, J. C. Moure, D. Castells-rufas, L. Aavrez, A. Espinosa and M.
Moreto, "Accelerating Edit-Distance Sequence Alignment on GPU Using the Wavefront
Algorithm," IEEE Access, vol. 10, pp. 63782-63796, 2022.

[22]. Z. Zhou and Z.-w. Chen, "Dynamic Programming for Protein Sequence Alignment,"
International Journal of Bio-Science and Bio-Technology, vol. 5, no. 2, pp. 141-150, 2013.

[23]. Q. Bani Baker, . R. Al-Hussien and M. Al-Ayyoub, "Accelerating multiple sequence alignments
using parallel computing," Computation, p. 32, 2024.

[24]. J. Makino, T. Ebisuzaki, , R. Himeno, and Y. Hayashizaki, , "Fast and accurate short-read
alignment with hybrid hash-tree data structure," Genomics \& Informatics, p. 19, 2024.

[25]. K. Balhaf, M. A. Shehab, W. T, M. Al-Ayyoub, . M. Al-Saleh and. Y. Jararweh, "Using GPUs
to speed-up levenshtein edit distance computation," in 7th International Conference on
Information and Communication Systems (ICICS), 2016.

[26]. A.-H. Ruba, Q. B. Baker and. M. Al-Ayyoub, "Fast exact sequence alignment using parallel
computing," in 9th International Conference on Information and Communication Systems
(ICICS), 2018.

[27]. B. Schmidt, F. Kallenborn, A. Chacon and C. Hundt, "CUDASW++ 4.0: ultra-fast GPU-based
Smith--Waterman protein sequence database search," BMC bioinformatics, p. 342, 25 2024.

[28]. M. Fakirah, M. Shehab, Y. Jararweh and M. Al-Ayyoub, , "Accelerating Needleman-Wunsch
global alignment algorithm with GPUs," in IEEE/ACS 12th International Conference of
Computer Systems and Applications (AICCSA), 2015.

[29]. H. Bahig, M. Hazber, and T. Kenawy, , "Optimized RNA structure alignment algorithm based
on longest arc-preserving common subsequence," AIMS Mathematics, pp. 11212--11227, 2024.

BIOGRAPHIES OF AUTHORS

Professor. Mohammed Fadhl Abdullah is currently a professor of computer

engineering in the Faculty of Engineering at Aden University in Yemen. He received his

Master's and Ph.D. degrees in computer engineering from the Indian Institute of Technology,

Delhi, India, in 1993, and 1998. He was the editor-in-chief of Aden University Journal of

Information Technology (AUJIT). He is a founding member of the International Center for

Scientific Research and Studies (ICSRS). His main research interests are in the fields of

machine learning, parallel algorithms, and cybersecurity. He can be contacted at email:

m.albadwi@ust.edu, or al_badwi@hotmail.com.

 Khaled Hassan Balhaf is a PhD student in Information Technology at the

University of Science and Technology in Aden. He got his Master's degree in Computer

Science from the Jordan University of Science and Technology in 2018. He got his Bachelor's

degree in Computer Information Systems from Mu'tah University in Jordan in 2013. He is

interested in bioinformatics, artificial intelligence, and parallel programming. He can be

contacted at email: khaledbalhaf2021@gmail.com

Periodico di Mineralogia Volume 94, No. 6, 2025

https://doi.org/10.5281/zenodo.18150369

ISSN: 0369-8963

Page207

mailto:m.albadwi@ust.edu
https://orcid.org/0009-0006-2595-3272
https://orcid.org/0000-0002-1733-7529

