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Abstract:  
     The use of machine learning based applications has become widespread in today’s era. 

Many CNN based implementation require high computational power and consumes time. 

CNNs are the base for any machine learning or neural network process. They are developed 

primarily using GPUs (Graphical Processing Units) that require very high-power 

consumption and are also expensive. The process is either sequential or pipelined and hence 

requires more computation time. With the usage of FPGAs, where the process is parallelized 

increases the efficiency of the process, thus reduces the power consumption compared to that 

of GPUs. Image recognition is the most commonly used machine learning application. Any 

machine learning application would involve an image recognition step. Hence developing of 

optimal energy consuming and low-cost models for image recognition is the need of the 

moment. FPGAs reconfigurability and its hardware parallelism provides flexibility and high 

performance with less processing power. These advantages of FPGAs can be utilized to 

generate an energy efficient and low-cost model of a CNN accelerator for image recognition. 

This helps to deploy the CNN models in low-end and battery-operated devices. 
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Introduction 
      Convolutional Neural Networks (CNNs) have revolutionized deep learning, serving as a 

foundation for numerous applications involving visual data, including image recognition, object 

detection, and video analysis. Their architecture, inspired from animal visual cortex, is designed 

to efficiently capture spatial hierarchies in images through a series of layered processing stages. 

       CNNs are widely used for processing visual data. They excel in tasks like image and video 

recognition and classification, medical image processing, and natural language processing. 

CNNs have different layers, including convolutional, pooling, and fully connected layers, which 

interact to extract and learn features from input images. 

Initially, CNN algorithms were executed on CPUs (Central Processing Units). However, as the 

demand for more  computational power grew, GPUs (Graphics Processing Units) became the 

preferred choice due to their   parallel processing capabilities. GPUs enabled significant 

speedups in training and inference of CNNs by allowing many operations to be performed 

simultaneously. 

        Despite the advantages of GPUs, their high-power consumption and cost have spurred 

interest in alternative platforms, such as Field-Programmable Gate Arrays (FPGAs) that are 

designed to be customized by users or developers after production, earning the name "field-

programmable." These devices feature an array of programmable logic blocks and a structured 

network of reconfigurable interconnections, allowing them to be configured for specific 

computational tasks. 
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         While GPUs have played a significant role in the development of CNN technology, 

FPGAs present a viable substitute that combines flexibility, energy efficiency, and high 

performance. This change is expanding the effect of deep learning in daily life by creating new 

opportunities for the deployment of CNNs in a broader range of applications, from industrial 

automation to consumer electronics. 

         This paper proposes a methodology to help in deploying the CNN which has a DSC layer 

into a FPGA Board using tools and framework existing which can make them more easily 

applicable to low power devices 

 

Related Work 

The rapid progress in deep learning has been driven by enhanced computing power, yet deep 

neural networks (DNNs) remain resource-intensive in terms of computation and memory. To 

address this, energy-efficient DNN accelerators have been developed for GPUs, ASICs, and 

FPGAs. While GPU have high performance but are power consuming, ASICs are energy-

efficient but do not have flexibility.[1]  

FPGAs have features like performance, reconfigurability, and cost-effectiveness. Image 

recognition tasks mostly use CNNs and ResNet models, but their size poses challenges for 

deployment on low-end devices. MobileNetV2 tackles this issue with Depthwise Separable 

Convolution (DSC) layers, reducing both model size and computational complexity. An FPGA-

based optimal energy accelerator for DSC layers optimizes power and memory usage by 

reducing multiplications and leveraging LUTs instead of DSPs, making it suitable for mobile 

devices.[5] 

 Utilizing binary weights and activations ranging from 3 to 6 bits helps the model to maintain 

high accuracy while drastically lowering its complexity and size. This reduces the dependency 

on DSPs by simplifying convolutional operations to basic addition. Additionally, it allows the 

entire model to fit in the chip, minimizing the use of slower external memory and enhancing 

it.[2]  

MobileNetV2 is a neural network architecture specifically designed to enhance performance 

on portable embedded devices. It incorporates inverted residual blocks, which first expand the 

input, apply lightweight Depthwise convolutions, and then compress the output back to a lower 

dimension, effectively capturing intricate features. The architecture also utilizes linear 

bottlenecks to maintain a smooth information flow, avoiding the performance drops caused by 

non-linearities. This design achieves high accuracy while significantly reducing computational 

demands and memory consumption, making it well-suited for on-the-go  applications on mobile 

devices like smartphones and IoT systems. Its balance of efficiency and performance makes it 

widely applicable to tasks such as image classification, object detection, and beyond.[6]  

  Implementing a pipelined, model-specific architecture enhances resource utilization and is 

further optimized using task buffers and cache memories. Implementing a pipelined, model- 
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-specific architecture enhances resource utilization and is further optimized using task buffers and 

cache memories. Data flow blocks are used to organize and streamline the movement of data 

through the pipeline. These blocks operate on data streams and perform various functions, 

including: (i)dividing or duplicating data, (ii) concatenating or merging data, (iii) adding data, (iv) 

reordering data, (v) repeating data, (vi) adjusting the number of hardware channels involves 

utilizing buffers or internal memory within the data flow blocks to perform operations while 

minimizing dependency on external memory bandwidth or DSP blocks. [3] 

       Various software libraries and frameworks include Caffe2, PyTorch, TensorFlow, MXNet, 
CoreML, CNTK, TensorRT, that help CNN developers speedily achieve their goals by providing 
them competent APIs and optimizing model execution on CPUs, GPUs, another older generation 
of DSPs and specialized ASICs. This is in addition to tools such as Xilinx Vivado HLS, Intel 
FPGA OpenCL SDK, Maxeler MaxCompiler, and LegUp, providing simplified hardware design 
with C, C++, OpenCL, and Java. OpenCL and Java to support the creation of functionally 
accurate hardware designs. [7] 

         FINN framework, developed by AMD Research and Advanced Development (RAD), is an 
open-source initiative aimed at deploying DNNs on FPGAs efficiently. It specializes in QNNs, 
which utilize low-bit-width weights and activations to minimize memory usage and enhance 
computational efficiency. FINN generates custom, dataflow-style architectures for each network, 
emphasizing high throughput and low latency.[9] 

         Deep Neural Networks (DNNs) have several intermediate layers between input channel and 
output channel. Each layer is made up of neurons (nodes) that process the input data through 
various computations. DNNs are built to address complex problems by learning patterns from 
extensive datasets. Techniques such as overlapping pooling, dropout to mitigate overfitting, and 
data augmentation methods like image translations and reflections have enhanced the capacity of 
the model to generalize hidden data.[4]  

          FFT-based convolution provides substantial computational benefits, it also comes with 

notable drawbacks. Implementing FFT-based convolution involves intricate mathematical 

transformations that can be difficult to optimize for embedded hardware. Additionally, FFT-based 

approaches typically demand more memory than direct convolution, particularly with large input 

sizes. Although FFT can accelerate large-scale convolutions, it may introduce extra latency due to 

the overhead of executing both the FFT and its inverse (IFFT).[7] 

 

Proposed Methodology 

This section describes the concepts utilized and the methodological flow of this approach. 

A. Standard 2D Convolution: 

       In standard 2D convolution, filters slide over the input image to extract spatial features 
across all channels, generating feature maps with spatial and channel-wise information. While 
effective, this method is computationally intensive and memory-heavy due to the huge no. of 
parameters, especially as filters, channels increase. This leads to longer training and inference 
times, higher energy consumption, and significant memory demands, posing challenges for 
resource-constrained devices like mobile and embedded systems.  Fig. 1 shows the spatial 
representation of a standard 2D convolution. 
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            Fig. 1. Standard 2D Convolution [10]          Fig. 2. Depthwise Separable Convolution [10] 

 

                        Size of filter = Dk x Dk x M               (1) 

Total no of multiplications = N x Dp2 x Dk2 x M     (2) 

Where, N – No of Filters 

Dp – Dimension of the output data 

Dk – Dimension of the input data 

M – No of input channels 
  
B. Depthwise Separable Convolution: 

 Depthwise convolution, a more efficient variant, tackles this issue by splitting the process 
into Depthwise and pointwise convolution. In Depthwise step, each filter is applied 
independently to a single channel of the input, rather than spanning all channels. This means 
that if there are M input channels, M separate Depthwise convolutions are performed as 
represented in Fig. 2. Following this, the pointwise convolution (PWC) step  combines the 
outputs from the Depthwise convolution (DWC) using 1x1 convolutions. This step 
aggregates the spatially filtered features across the channels, effectively reduces the 
complexity of the computation and the no. of multiplications as given in (3) – (5).    

No of multiplications for DWC= M x Dk2 x Dp2             (3) 

No of multiplications for PWC = M x Dp2 x N               (4) 

                           Total no. of multiplications = M x Dp2 x (Dk2 + N)      (5) 

Where, N – No of Filters 

Dp – Dimension of the output data 

Dk – Dimension of the input data 
M – No of input channels 

 

C. Mobilenet Architecture 

       MobileNet is a family of very efficient CNN models specially designed for mobile and 
embedded devices. These models provide very good accuracy with low computational and 
memory power requirements. Depthwise Separable Convolutions achieve parameter and 
computation reduction. The key hyperparameters are the width multiplier and resolution 
multiplier, which control the number of channels and input size to find the balance among 
accuracy, model size, and computational cost involved.                       

D. Bottleneck Residual Bock: 

       Bottleneck Resididual Block performs the inverted residual structure. Herein, the first 
step includes reducing an input's dimensionality with a 1x1 convolution, then being subjected 
to a light Depthwise convolution (generally 3x3), finally followed by projection back to the 
input dimension using yet another 1x1 convolution. 
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E. Mechanics of Inverted Residual Block: 

• Bottleneck Compression:  The block starts with a 1x1convolution, known as the 
bottleneck layer, that decreases the number of input channels. This step compresses the 
input, reducing the computational load for the subsequent operations as represented in 
Fig. 3. 

• Depthwise Convolution: The compressed representation is then processed using a 
Depthwise convolution, which incorporates a different filter to each input channel 
independently, unlike standard convolutions that operate across all channels. This 
approach significantly decreases both the amount of parameters and computation 
complexity. 

• Expansion: Finally, a 1x1 convolution block is implemented to restore the original no. of 
channels, enabling that model to capture more complex representations. 

Table 1. MobileNet Architecture 
 

 

 

 

 

 

 

 

 

 

• Residual Connection: A residual connection (or shortcut connection) is maintained 

between the input channel and the output channel. Which helps in preserving the original 

information and ensures that gradients flow smoothly during backpropagation, making 

the network easier to train. 

Table 1. describes the entire MobileNet architecture with all the bottleneck layers and the 
input and output features. 

 

F. ReLU  Non-Linearity: 

      ReLU6 is used by MobileNetV2 in place of the conventional ReLU activation 

mechanism, capping the activation to 6. This change aids in increasing training stability, 

particularly with less precise equipment.    

G. Methodology Flow 

      The flowchart that is shown in Fig. 4. outlines the process of implementing and deploying 

a Convolutional Neural Network (CNN) using the FINN framework for hardware 

acceleration. The CNN model was initially developed and trained using the PyTorch 

framework. The CNN model is quantized to a QNN using Brevitas. Quantization reduces the 

precision of weights and activations (e.g., to low-bit integers like INT8 or INT4). 

Volume 94, No. 2, 2025Periodico di Mineralogia

https://doi.org/10.5281/zenodo.15302810

ISSN: 0369-8963

Page 368



       

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Methodology Flow Chart 

 

      This significantly lowers memory usage, reduces computational complexity, and 

minimizes power consumption, making the model more efficient for hardware acceleration. 

By incorporating QAT, Brevitas ensures the network adapts to the non-linearity and rounding 

effects introduced during quantization, maintaining high accuracy even with reduced 

precision. From PyTorch model to ONNX model. The pre-trained PyTorch model is 

transformed into ONNX format. ONNX provides an intermediate representation that enables 

compatibility with various frameworks and tools, including FINN. Before deploying the 

model, input data preprocessing is implemented to normalize inputs. This step ensures that 

the model performs optimally when handling real-world input data. 

       The QNN undergoes FINN-specific transformations to make it compatible with hardware 

interfaces. These transformations may include simplifying computational graphs, Modifying 

layers to optimize resource utilization for FPGA, etc. The model is divided into stages to 

support pipelining, allowing different parts of the computation to execute concurrently. 

Resource Allocation ensures efficient distribution of hardware resources (e.g., logic blocks, 

memory).The QNN layers are mapped to corresponding hardware layers, such as MVAU, 

VVAU, and thresholding layers. 

Folding Technique is applied to MVAU, VVAU, and thresholding layers to reduce 
hardware resource utilization and improve efficiency by sharing resources across 
computations. The model undergoes C-Simulation to validate its functionality and 
performance at a software level. This step simulates the hardware behavior using a C-based 
model. RTL Simulation is performed to ensure that the synthesized hardware meets the 
design requirements. It provides a bit-accurate representation of the hardware 
implementation. 

 

Results and Discussion 

 

A.  Quantized Neural Network: 

      A Quantized Neural Network (QNN) for MobileNet using the PyTorch library Brevitas 

was modeled. Quantized MobileNet architecture is developed by replacing standard layers 
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with Brevitas quantized layers, such as QuantConv2d and QuantReLU. This approach helps 

create efficient models suited for resource-constrained environments, maintaining good 

performance while reducing computational and memory requirements. Parts of the quantized 

neural network is shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

            

 

 

 

 

 

 

 

Fig. 5. Mobilenet Using QNN                                     Fig. 6. Pre-Processing Unit 

 

B. Pre-Processing Unit: 

     Preprocessing unit shown in Fig. 6 is added for the below key reasons: Normalization to 

make sure  to have similar scale for all input features for numerical stability, Data 

Augmentation to improve model generalization and prevent overfitting, Feature Extraction to 

make critical information more accessible, and Input Standardization to maintain consistency 

across different data sources. These preprocessing steps collectively contribute to achieving 

higher accuracy, better generalization, and more robust performance in CNN models. 

C. Streamlining Transformations: 

        The streamlining transformations used from FINN are designed to optimize neural network 

models by eliminating floating-point operations and simplifying the network structure. Some of the 

transformations used: MoveMulPastDWConv, AbsorbMulIntoMultiThreshold, 

MoveTransposePastScalarMul, AbsorbTransposeIntoFlatten, MoveScalarMulPastMatMul, 

CollapseRepeatedMul, RoundAndClipThresholds. These transformations as shown in Fig. 7 help in 

creating more efficient and compact neural network models. 
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 Fig. 7. Mobilenet model after Streamlining Transformations        Fig. 8. IM2COL Layer                                                                                            

 

D. IM2COL Layer: 

       Convolution layers are then transformed to IM2COL layers which perform the same convolution 

operation in an optimized manner as shown in Fig. 8. The Im2Col operation is used in optimizing 

convolution operations, especially for hardware implementations like FPGAs. It transforms the input 

image into a column matrix, making it easier to perform matrix multiplications, which are more 

efficient on hardware. Transformation Process of the IM2COL layer. Extract Patches: The Im2Col 

operation extracts overlapping patches from the input image based on the kernel size, stride, and 

padding. Flatten Patches: Each patch is flattened into a column. Concatenate Columns: All column 

vectors are concatenated to form a large matrix, where each column represents a patch from the input 

image. 

 

 

 

 

 

 

 

 

                                                                                                                          

Fig. 10. Specialize Layers 

 

 

                Fig. 9. Hardware Layers 
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E. Hardware Layers: 

The QNN layers are then transformed to their corresponding hardware layers to make 
them compatible for C-simulation and RTL-simulation as represented in Fig. 9. 

• Convolution Input Generator:  Identified convolution layers are replaced with the 
appropriate convolution input generator nodes, which are optimized for FPGA 
implementation. 

• Thresholding: Transformation in FINN is used to convert multi-threshold layers into 
hardware-friendly thresholding layers. 

• Vector-Vector Activation Unit (VVAU): Designed to convert matrix multiplication 
(MatMul) layers with quantized inputs and weights into VVAU layers. Useful when the 
sparsity annotation of the weight matrix indicates that the MatMul layer belongs to a 
depth wise convolution. 

• Matrix-Vector Activation Unit(MVAU): Designed to convert matrix multiplication 
(MatMul) layers with quantized inputs and weights into VVAU layers. Here it is used to 
convert the pointwise convolution. 

• FM padding layer (Fixed-Point Multiplier padding layer): Design to help in efficiently 
handling the padding required for convolution operations by performing fixed-point 
multiplications, which are more hardware-friendly and faster compared to floating-point 
operations. 

F. Specialize Layers: 

      This process involves converting standard or custom layers into hardware (HW) 
abstraction layers, which are then further specialized into either Register-Transfer Level 
(RTL) or High-Level Synthesis (HLS) variants. 

• Dataflow Partitioning: The network graph is split into hardware and non-hardware parts. 
The hardware part is further processed, while the non-hardware part remains for 
additional transformations. 

• Convert to HW Layers: Standard or custom layers are converted to hardware abstraction 
layers, which are placeholders that can be implemented in HLS or RTL as shown in Fig. 
10. 

• Specialize Layers: The network is converted to hardware abstraction layers, and non-
hardware layers are excluded to continue processing the model to make sure that the 
model is optimized for hardware implementation. 

G. Optimization: 

       Optimization techniques are used to reduce the throughput and resource utilization of the 
model. The techniques used are listed below. 

• Folding: This technique involves combining multiple operations into fewer steps, which 
reduces the computational load and resource usage. It is particularly useful for FPGA 
implementations where hardware resources are limited. 

• Processing Elements (PE): These are the basic units of computation in an FPGA. By 
adjusting the number of PEs, the function optimizes the parallelism and resource usage of 
the model. 

• SIMD (Single Instruction, Multiple Data): This concept allows a single instruction to be 
executed on multiple data points simultaneously, setting SIMD allows us to set the degree 
of parallelism a layer should use. 

• RAM Style: Type of RAM style such as block RAM, or distributed RAM is determined 
based on the layers used. 
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H. Resource Utilization ,Timing Distribution and Simulation Report: 

      The graph in Fig. 11. illustrates the number of LUTs required for each layer of a neural 
network, with the settings PE=1  and SIMD=1. 

       Some layers (e.g., T5, T3) have significantly higher LUT usage, likely due to more 
computationally intensive operations such as large convolutional kernels or fully connected 
layers. The variations in LUT consumption reflects differences in layer configurations (e.g., 
number of channels, kernel sizes) or optimizations. Layers like C0 and M7 show minimal 
LUT usage, since they use simpler operations and lower computational complexity. 

        The graphs show the clock cycles required for each layer before and after optimization. 

Before performing optimization as shown in Fig. 12. techniques, the throughput is very large 

for the MAVU layers making them very complex and time consuming and after optimization 

in Fig. 13. the load of the MAVU layers is reduced the overall clock cycles usage is 

distributed evenly. This is done by applying the folding technique and specifying the RAM 

style of the different layers based on the type of the layer. 

 

                                                                                                               

                                                                                                                  

 

 

                                                                                                               

                                                             

 

 

 

 

 

 

 

 

 

Fig. 11. Number of LUT’s Required 

   

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Timing Before Optimization 

Network Layers 
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Fig. 13. Timing After Optimization 

 

IP Generation is done. C-Simulation and RTL Simulation is done and the weights 

generated with the original model is compared with the C- simulation and RTL model 

simulated weights and they are found to be the same as shown in Fig.  14. The RTL 

simulation report is generated which provides the various parameters of the simulated model 

such as latency, throughput , clock frequency, etc. The various parameters  generated are 

shown in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. C- Simulation and RTL Simulation Output 

 

 

 

Table 2. Simulation Report 
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Conclusion 

      The LUT usage is highly variable across layers, with certain layers consuming 

significantly more LUTs (e.g., layers like T5 and T3). This variability suggests that 

computationally intensive operations (e.g., convolutions with large kernels or layers with 

high channel counts) are driving resource consumption. In future work to focus optimizing 

the high-LUT layers by reducing kernel sizes or number of channels and applying techniques 

like pruning. The clock cycle analysis shows a few dominant layers (e.g., T0, M1, M6) 

requiring an exceptionally high number of cycles. These layers are bottlenecks in terms of 

timing, as they take significantly longer to compute compared to other layers.  

      To reduce clock cycles, we can split large operations into smaller, more parallelizable 

tasks. Explore layer-wise optimizations, such as reducing bit width or simplifying operations. 

       FINN supports low-bit width operations, but excessive bit reduction can lead to loss of 

accuracy. Evaluate the accuracy of the transformed model. If accuracy degradation is 

significant, consider using QAT to regain precision. If the current design complexity is a 

challenge, consider simplifying the MobileNet architecture. Use a reduced version of 

MobileNet (e.g., MobileNetV2-Tiny). Replace layers with more hardware-friendly 

counterparts, such as using Depthwise separable convolutions or skipping certain blocks.  

       As future work to implement the Mobilenet model developed using FINN on an FPGA 

board in real time and test its real time capabilities by using images capture in real-time. 
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