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Abstract: 
The use of fixed point theorems in numerical analysis is examined in this work, with an 

emphasis on how they might be applied to solve optimization and equation problems. Fixed 

point theorems are essential in many branches of mathematics and engineering because they 

state that there are points that do not change under specific functions. The paper offers a 

thorough Python implementation of important fixed point algorithms, emphasizing their 

useful applications in iterative techniques for solving nonlinear equations. These algorithms 

include the Banach and Brouwer fixed point theorems. Furthermore, visualizations are 

created to show how these algorithms perform in terms of convergence and efficacy in 

various contexts. The goal of the implementation is to give researchers and students in 

numerical analysis and associated fields an approachable way to comprehend fixed point 

theorems, as well as theoretical insights and useful tools. The constraints and potential 

difficulties of applying fixed point approaches in situations involving complicated problem 

solving are also covered in the study. 

Keywords- Fixed Point Theorem, Numerical Analysis, Python Implementation, Iterative 

Methods, Convergence Visualization 

 

1. Introduction 
In the field of mathematics known as "fixed point theory," the existence, uniqueness, and 

characteristics of solutions to equations with the form f(x) = x—where f is a specified 

function—are examined. This seemingly easy equation has important ramifications and wide- 

ranging applications in a variety of domains, including pure mathematics and the solution of 

practical issues in computer science, physics, economics, and other areas. 

Economics: The presence and stability of equilibria in game theory and economic models are 

examined using fixed point theory. 

Physics: It is useful for understanding phase transitions and the behaviour of dynamical 

systems. 

Computer science: It's used to create algorithms that solve optimization and equation issues. 

Engineering: Control system design and structural stability analysis both make use of fixed 

point theory. 

In short, A point x such that f(x) = x is a fixed point of a function f(x). 

Because fixed point stands for equilibrium conditions, stability, and answers to a variety of 

issues, it is significant. The instruments and procedures needed to thoroughly examine and 

comprehend the presence, characteristics, and actions of these unique points are provided by 

fixed point theory. The contraction mapping principle, which asserts that if f is a contraction 

mapping, then it has a unique fixed point, is the cornerstone of fixed point theory. A function 

that gradually shortens the distances between locations is known as a contraction mapping. 
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The well-known Banach fixed point theorem asserts that there is a single fixed point for any 

contraction mapping on a whole metric space. 

Numerous additional significant theorems and applications exist in the large and dynamic 

area of fixed point theory [1-9]. A strong technique that may be used to a wide range of 

issues is fixed point theory. This discipline is expanding quickly and has seen a lot of 

interesting new discoveries. 

There are three main branches of fixed point theory discussed in this study- 

A. Banach Fixed-Point Theorem 

B. Brouwer’s Fixed Point Theorem 

C. Newton’s Iterative Method 

D. Practical implementation: Solving a System of nonlinear equations. 

The three main branches of fixed point theory are followed in the organization of this work. 

The existence of unique fixed points through Banach fixed point theorem is covered in 

Section 2. The third section examines Brouwer’s Fixed Point Theorem. The primary findings 

pertaining to Newton’s iterative method are discussed in Section 4. In section 5, we will solve 

a system of nonlinear equations using Newton’s method demonstrating practical 

implementation of fixed point theorem. We alsoanalyse the implementation of these theorems 

using a python environment to simulate their working for better interpretability in each 

section. 

 

2. Banach Fixed-Point Theorem 
A major area in fixed point theory is the existence and uniqueness of fixed points. Finding the 

circumstances under which a particular function has fixed points and verifying the uniqueness 

of these points are the main goals of this field of study. Fixed points are parts of the domain 

of a function that don't change while the function is used. Understanding stability, 

equilibrium, and transformation behaviour in a variety of mathematical situations depends on 

this issue. 

The Banach fixed-point theorem, often referred to as the contraction mapping principle, is a 

fundamental statement on the existence and uniqueness of fixed points. This theorem ensures 

that for a contraction mapping on a whole metric space, there is a fixed point and that it is 

unique. A contraction mapping is a function that guarantees convergence to a single 

equilibrium point by shortening the distance between locations. This result gives a strong 

instrument for proving the existence and uniqueness of fixed points in a variety of 

circumstances, and it forms the basis for other theorems. 

The Banach Fixed-Point Theorem, a foundational result in the theory of contraction 

mappings, highlights the significance of this principle. This theorem, which bears the name of 

the Polish mathematician Stefan Banach [1], provides the foundation for comprehending the 

existence and uniqueness of fixed points for particular kinds of mappings. 

The theorem basically gives the circumstances under which a function f on a whole metric 

space X has a single fixed point. The main idea is a contraction mapping, in which the 

distance between points is decreased following the transformation by the function f. 

 

2.1 Implementation 

Implementing the Banach Fixed-Point Theorem in Python involves defining a contraction 

mapping function and iteratively applying this function to an initial guess until convergence 

to the fixed point is achieved. A contraction mapping guarantees convergence to a single 

fixed point by ensuring that the distance between subsequent iterations shrinks. To put this 

approach into practice, a loop must be built up that runs until the fixed point is achieved, or 

until the difference between iterations is less than a predetermined tolerance threshold. 
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To demonstrate the implementation of the Banach Fixed-Point Theorem in Python with a 

specific function and plot the results, let's consider a simple contraction mapping: 

f(x) = cos(x) 

Algorithm: Banach fixed point theorem 

Input- 

I. f: Contraction mapping function 
II. X0: Initial guess 

III. Tol: Tolerance for convergence 

IV. Max_Iter: maximum Iterations 

Initialization- 
V. Set X=X0 

VI. Create empty history 

Iterative procedure 

VII. For i=1 to Max_Iter 

. Calculate Xnew=f(x) 

. Append Xnew to history 

. If |Xnew-X|<1 : update X=Xnew 

The result obtained by implementing this in python3.8 is shown in Fig.1. It shows both the 

convergence of the Banach Fixed point theorem and the convergence rate for the cosine 

function. It is clear that with an initial guess of value 1, it takes around 40 iterations to 

converge to the function’s fixed point which is 0.739. According to the Fixed point theorem, 

cos(x)=x i.e. at x=0.739, cos(0.739)=0.739 (Note that x is in radians). Hence the solution is 

correct. 

 

Fig.1 Convergence of the Banach Fixed point theorem for cosine function as well as the 

convergence rate under the maximum iterations. 

 

3. Brouwer’s Fixed Point Theorem 
A pillar of fixed point theory and topology, Brouwer's theorem illustrates the larger context 

of fixed point existence. The theorem, first proved by Luitzen E.J. Brouwer in 1911 [3], states 

that there is always at least one fixed point for every continuous function f mapping a 

nonempty, compact, and convex subset D of Euclidean space Rn to itself. In other words, 

there is a point x within D such that f(x) = x. 
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3.1 Implementation 

To demonstrate the implementation of the Brouwer’s Fixed-Point Theorem in Python with a 

specific function and plot the results, let's consider a simple contraction mapping: 

f(x) = sin(x) 

 

Algorithm: Brouwer’s Fixed Point Theorem 

Input- 

I. f: Input function 
II. X0: Initial guess 

III. Tol: Tolerance for convergence 

IV. Max_Iter: maximum Iterations 

Initialization- 
V. Set X=X0 

VI. Create empty history 

Iterative procedure 

VII. For i=1 to Max_Iter 
. Calculate Xnew=f(x) 

. Append Xnew to history 

. If |Xnew-X|<1 : update X=Xnew 

. Plot the function f(x) and successive iterations. 

The algorithm implementation is somewhat similar but there is a fundamental difference 

between both theorems. The Banach Fixed Point Theorem offers better guarantees for 

contraction mappings on complete metric spaces, whereas Brouwer's Fixed Point Theorem is 

more generic and covers a wider class of functions and domains and does not provide an 

exact way of finding the fixed point. The result is shown in Fig. 2, which demonstrates the 

convergence of function f(x) along the fixed point 0.02. According to the fixed point theorem, 

sin(x)=x i.e. sin(0.02) =0.02. Hence the implementation is correct. Note that x is in radians. 
 

Fig.2 Brouwer's Fixed Point theorem implementation results in python showing the function 

plot along with its value on successive iterations. 

 

4. Newton’s Iterative method 
Newton’s iterative method or Newton-Raphson method is a special case of fixed point 

theorem. It is an iterative process of finding the fixed point of a function- 
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𝑔(𝑥) = 𝑥 − 
𝑓(𝑥) 

 
 

𝑓′(𝑥) 

Where f(x) is the function whose root we have to find and f’(x) is the derivative of the 

function. 

Newton's approach iteratively converges to the roots of a function by utilizing the ideas and 

characteristics offered by the fixed-point theorem. The theoretical basis for Newton's 

method's efficacy in locating function roots is the existence and convergence of the fixed 

point of g(x). In Newton’s method, a fixed point corresponds to the root of f(x) such that if x 

is fixed point of g(x)then- 

x = 𝑥 − 
𝑓(𝑥) 

𝑓′(𝑥) 

f(x) = 0 
Newton’s method relies on convergence of a fixed point of g(x) in the neighbourhood of the 

root starting from the initial guess. The rate of convergence of Newton’s method is quadratic 

and this converges much quickly. 

 

4.1 Implementation 

To implement Newton’s method in python, let us lake a function f(x)- 

f(x) = x3-3x2+2 

Algorithm: Newton’s Iterative Method 

Input- 

I. f(x): input function 

II. f’(x): derivative of input function 
III. x0: Initial guess 

IV. Tol: Tolerance for convergence 

V. Max_Iter: maximum Iterations 

Initialization- 
VI. Set x=x0 

VII. Create empty history 

Iterative procedure 

VIII. For |f(x)|>Tol and iterations<Max_Iter 
. Calculate xnew= x-f(x)/f'(x) 

. Update x = xnew 

. Increment iteration 

Fig. 3 shows the convergence of Newton’s method to find the root of function f(x) as well as 

the plot of f(x) vs iterations. The root of the function was found out to be (-0.84,0) in 11 

iterations with an initial guess of (1.5,0.88). 
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Fig. 3 Finding the root of the equation using Newton’s method considering root as the fixed 

point of function f(x)and also showing the convergence with successive iterations. 

 

5. Solving a system of nonlinear equations: A practical implementation 

Let us consider two functions f1(x, y) and f2(x,y) defined in a system as follows: 

𝑓1(𝑥, 𝑦) = 𝑠𝑖𝑛(𝑥) + 𝑥2 − 𝑦2 − 1 

𝑓2(𝑥, 𝑦) = 𝑒𝑥 + 𝑦3 − 2 

Algorithm- Implemented in Python 

Input- 

I. f(x)€ f1(x, y) and f2(x, y): input functions in a system 

II. J(x): Jacobian Matrix 

III. x0: Initial guess 

IV. Tol: Tolerance for convergence 

V. Max_Iter: maximum Iterations 

Initialization- 

VI. Set x=x0 

VII. Create empty history 

Iterative procedure 

VIII. For|f(x)|>Tol and iterations<Max_Iter 

A. Calculate delX=-J(x)-1f(x) 

B. Calculate xnew= x+delX 

C. Update x = xnew 

D. Increment iteration 

Fig. 4 shows the surface plot for system of nonlinear functions. Through successive 

iterations, we can see in the Fig. 5 that the solution to the system of equations is 

approximately [0.67951804 0.30027148] found in 11 iterations with initial guess [0,0.1]. 
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Fig. 4 Surface plot of defined system of nonlinear functions. 

 

Fig. 5 Solution to the system of nonlinear functions using Newton’s method showing 

convergence with respect to iterations and contour plot showing value of x after every 

iteration till the final value. 

 

6. Conclusion 
In this study, we have effectively used Python 3.8 to implement the fixed-point theorem and 

Newton’s method being a special case of fixed point theorem. We were able to solve 

nonlinear equations efficiently by utilizing the fixed-point iteration technique. The graphic 

analysis shed light on each method's convergence tendency by showing how quickly it 

approaches the fixed point when given a credible starting guess. The following points are the 

key takeaways of this study- 
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A. The existence and uniqueness of fixed points for contraction mappings on 

complete metric spaces are ensured by Banach's fixed-point theorem, 

sometimes referred to as the contraction mapping theorem. 

B. Any continuous function that maps a compact convex set to itself has at least 

one fixed point, according to Brouwer's fixed-point theorem. This theorem is 

fundamental to several disciplines, such as game theory and economics. 

C. Newton's method relies on the iterative formula 𝑔(𝑥) = 𝑥 − 
𝑓(𝑥) 

which is 
𝑓′(𝑥) 

derived from the fixed point theorem. 
D. We plotted the function, the root, and the iterative process using matplotlib in 

the python environment. The plots offered a good visual representation of the 

convergence behaviour of the approach. 

E. Finally, a practical implementation of fixed point theorem for finding out the 

solution to the system of nonlinear equations is given. Through visualization, 

the convergence after each iteration is clear and the solution can also be seen 

on the plot where both functions intersect. 
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APPENDIX 

A. Python code for Banach Fixed Point Theorem 

####start######## 

import numpy as np 

import matplotlib.pyplot as plt 

 

def banach_fixed_point(f, x0, tol=1e-7, max_iter=1000): 

""" 

Implements the Banach Fixed-Point Theorem to find the fixed point of a 

contraction mapping. 
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Parameters: 

f (function): The contraction mapping function. 

x0 (float): Initial guess. 

tol (float): Tolerance for convergence. 

max_iter (int): Maximum number of iterations. 

 

Returns: 

float: The fixed point. 

list: History of iterates. 

""" 

x = x0 

history = [x0] 

for i in range(max_iter): 

x_new = f(x) 

history.append(x_new) 

if abs(x_new - x) <tol: 

return x_new, history 

x = x_new 

raise Exception("The method did not converge") 

 

# Example contraction mapping function 

def contraction_mapping(x): 

return np.cos(x) 

 

# Initial guess 

x0 = 1.0 

 

# Finding the fixed point 

fixed_point, history = banach_fixed_point(contraction_mapping, x0) 

 

# Display the result 

print(f"The fixed point is: {fixed_point}") 

 

# Plotting the results 

iterations = np.arange(len(history)) 

plt.figure(figsize=(12, 6)) 

 

# Plot 1: Convergence of iterates 

plt.subplot(1, 2, 1) 

plt.plot(iterations, history, marker='o', linestyle='-', color='blue') 

plt.axhline(y=fixed_point, color='r', linestyle='--', label=f'Fixed Point: 

{fixed_point:.5f}') 
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plt.xlabel('Iteration') 

plt.ylabel('Value') 

plt.title('Convergence of Banach Fixed-Point Iteration for Cosine Function') 

plt.legend() 

plt.grid(True) 

 

# Plot 2: Convergence Rate 

plt.subplot(1, 2, 2) 

errors = np.abs(np.array(history) - fixed_point) 

plt.semilogy(iterations, errors, marker='o', linestyle='-', color='green') 

plt.xlabel('Iteration') 

plt.ylabel('Absolute Error') 

plt.title('Convergence Rate') 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

####end###### 

 

B. Python code for Brouwer’s Fixed point theorem 

########start######## 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Define the function 

def f(x): 

return np.sin(x) 

 

# Implementing the fixed point iteration method 

def fixed_point_iteration(x0, tol=1e-6, max_iter=5000): 

x_iterations = [x0] 

y_iterations = [f(x0)] 

 

# Iterate until convergence or maximum iterations reached 

for i in range(1, max_iter): 

x1 = f(x_iterations[-1]) 

x_iterations.append(x1) 

y_iterations.append(f(x1)) 

if abs(x1 - x_iterations[-2]) <tol: 

break 

 

return x_iterations, y_iterations, x1 

 

# Plot the function, its iterations, and the fixed point 
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def plot_function_and_iterations(x_iterations, y_iterations, fixed_point): 

x_values = np.linspace(-2*np.pi, 2*np.pi, 1000) 

y_values = f(x_values) 

plt.figure(figsize=(10, 5)) 

plt.subplot(1, 2, 1) 

plt.plot(x_values, y_values, label='f(x) = sin(x)', color='blue') 

plt.plot(x_iterations, y_iterations, color='red', linestyle='-', marker='o', 

label='Iterations') 

plt.axhline(y=f(fixed_point), color='green', linestyle='--', label='Fixed Point') 

plt.text(fixed_point, f(fixed_point), f'{fixed_point:.4f}', ha='right', va='bottom') 

plt.xlabel('x') 

plt.ylabel('f(x)') 

plt.title('Convergence along Fixed Point') 

plt.grid(True) 

plt.legend() 

 

# Plot value vs iteration 

plt.subplot(1, 2, 2) 

plt.plot(range(len(y_iterations)), y_iterations, color='red', linestyle='-') 

plt.xlabel('Iteration') 

plt.ylabel('f(x)') 

plt.title('Function value vs Iteration') 

plt.grid(True) 

 

plt.tight_layout() 

plt.show() 

 

# Example usage 

if  name == " main ": 

x0 =1# Initial guess 

x_iterations, y_iterations, fixed_point = fixed_point_iteration(x0) 

plot_function_and_iterations(x_iterations, y_iterations, fixed_point) 

##########end################# 

 

C. Python code for Newton-Raphson Method 

##################start################# 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Define the function and its derivative 

def f(x): 

return x**3 - 2*x**2 + 2 
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def df(x): 

return 3*x**2 - 4*x 

 

# Implement Newton's method 

def newtons_method(f, df, x0, tol=1e-6, max_iter=100): 

x = x0 

x_values = [x0] # List to store values of x at each iteration 

f_values = [f(x0)] # List to store values of f(x) at each iteration 

iterations = 0 

while abs(f(x)) >tol and iterations <max_iter: 

x = x - f(x) / df(x) 

x_values.append(x) 

f_values.append(f(x)) 

iterations += 1 

if iterations == max_iter: 

print("Maximum iterations reached. Convergence not achieved.") 

else: 

print(f"Root found: {x} after {iterations} iterations.") 

return x, x_values, f_values 

 

# Define the range of x values for plotting 

x_values = np.linspace(-1, 2.5, 100) 

y_values = f(x_values) 

 

# Find the root using Newton's method 

initial_guess = 1.5 

root, x_iter, f_iter = newtons_method(f, df, initial_guess) 

 

# Plot the function and values vs iteration side by side 

fig, axs = plt.subplots(1, 2, figsize=(12, 5)) 

 

# Plot the function 

axs[0].plot(x_values, y_values, label='f(x) = x^3 - 2x^2 + 2') 

axs[0].scatter(root, f(root), color='red', label='Final Root') 

 

# Plot the values of f(x) after each iteration 

axs[0].plot(x_iter, f_iter, linestyle='--', color='r',marker= '.',mfc='k',zorder=1) 

 

# Annotate the root 

axs[0].annotate(f'Root: ({root:.2f}, {f(root):.2f})', xy=(root, f(root)), 

xytext=(root+0.3, f(root)+1), 

arrowprops=dict(facecolor='black', arrowstyle='->')) 
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# Annotate the initial guess point 

axs[0].scatter(initial_guess, f(initial_guess), color='green', label='Initial 

Guess',zorder=2) 

axs[0].annotate(f'Initial Guess: ({initial_guess:.2f}, {f(initial_guess):.2f})', 

xy=(initial_guess, f(initial_guess)), 

xytext=(initial_guess+0.3, f(initial_guess)-1), arrowprops=dict(facecolor='black', 

arrowstyle='->')) 

 

axs[0].set_xlabel('x') 

axs[0].set_ylabel('f(x)') 

axs[0].set_title('Newton\'s Method for Finding a Root') 

axs[0].legend() 

axs[0].grid(True) 

 

# Plot values vs iteration 

iterations = range(len(x_iter)) 

axs[1].plot(iterations, x_iter, marker='o', label='Value of f(x)',color='b') 

axs[1].set_xlabel('Iteration') 

axs[1].set_ylabel('f(x)') 

axs[1].set_title('Values of f(x) at Each Iteration') 

axs[1].grid(True) 

axs[1].legend() 

 

plt.tight_layout() 

plt.show() 

############end################### 

 

D. Python code for solving system of nonlinear equations 

#############start################ 

import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

 

# Define the system of nonlinear equations 

def F(X): 

x, y = X 

return np.array([np.sin(x) + x**2 - y**2 - 1, np.exp(x) + y**3 - 2]) 

 

# Define the Jacobian matrix of the system 

def J(X): 

x, y = X 

return np.array([[np.cos(x) + 2*x, -2*y], 

[np.exp(x), 3*y**2]]) 
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# Implement the fixed point iteration method (Newton-Raphson for systems) 

def newton_raphson_system(F, J, initial_guess, tolerance=1e-6, max_iterations=100): 

X = np.array(initial_guess) 

history = [X] 

for iteration in range(max_iterations): 

FX = F(X) 

JX = J(X) 

delta_X = np.linalg.solve(JX, -FX) 

X_new = X + delta_X 

history.append(X_new) 

if np.linalg.norm(X_new - X) < tolerance: 

print(f'Converged to solution after {iteration} iterations.') 

return X_new, np.array(history) 

X = X_new 

raise ValueError('Did not converge to a solution within the maximum number of 

iterations.') 

 

# Set the initial guess 

initial_guess = [0, 0.1] 

 

# Find the solution 

solution, history = newton_raphson_system(F, J, initial_guess) 

print(f'The solution to the system is approximately {solution}') 

# Convergence plot 

norms = [np.linalg.norm(history[i] - history[i-1]) for i in range(1, len(history))] 

 

# Surface and contour plots 

x = np.linspace(-2, 2, 400) 

y = np.linspace(-2, 2, 400) 

X, Y = np.meshgrid(x, y) 

Z1 = np.sin(X) + X**2 - Y**2 - 1 

Z2 = np.exp(X) + Y**3 - 2 

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6)) 

# Plot Convergence 

ax1.plot(norms, marker='o') 

ax1.set_yscale('log') 

ax1.set_xlabel('Iteration') 

ax1.set_ylabel('Norm of Difference') 
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ax1.set_title('Convergence of Newton-Raphson Method') 

ax1.grid(True) 

 

# Plot Contour 

CS1 = ax2.contour(X, Y, Z1, levels=[0], colors='b') 

CS2 = ax2.contour(X, Y, Z2, levels=[0], colors='r') 

ax2.clabel(CS1, inline=1, fontsize=10) 

ax2.clabel(CS2, inline=1, fontsize=10) 

ax2.scatter(solution[0], solution[1], color='k', zorder=5) 

ax2.plot(*zip(*history), marker='o', color='g', linestyle='--', zorder=4) 

ax2.scatter([], [], color='b', label='f1(x,y)=0') 

ax2.scatter([], [], color='r', label='f2(x,y)=0') 

ax2.annotate('Initial Point', xy=(initial_guess[0], initial_guess[1]), xytext=(-1, 1.5), 

arrowprops=dict(facecolor='black', shrink=0.05), fontsize=10, color='black') 

ax2.set_xlabel('x') 

ax2.set_ylabel('y') 

ax2.set_title('Contour Plot of f1 (x,y) and f2 (x,y) with Iteration Path') 

ax2.legend(['Solution', 'Iteration Path', 'f1(x,y)=0', 'f2(x,y)=0'], loc='lower center') 

ax2.grid(True) 

 

plt.tight_layout() 

plt.show() 

# 3D Surface plots 

fig = plt.figure() 

ax = fig.add_subplot(111, projection='3d') 

ax.plot_surface(X, Y, Z1, alpha=0.5, rstride=100, cstride=100) 

ax.plot_surface(X, Y, Z2, alpha=0.5, rstride=100, cstride=100) 

ax.set_xlabel('x') 

ax.set_ylabel('y') 

ax.set_zlabel('Function Value') 

ax.set_title('Surface Plots of f1 (x,y) and f2 (x,y)') 

plt.show() 

#############end################### 
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