
Exploring Fixed Point Theorem in Numerical Analysis: A

Comprehensive Python Implementation and Visualization

Poonam Maurya,Research Scholar, Bharti Vishwavidyalaya, Durg, (C.G.)

Rita Shukla, Associate professor, Bharti Vishwavidyalaya, Durg, (C.G.)

Manish Kumar Singh, Assistant professor, Bharti Vishwavidyalaya, Durg, (C.G.)

Bharti vishwavidyalaya, Balod Road, Chandkhuri, Durg,

Chhattisgarh, India

Pin: 491001

Abstract:
The use of fixed point theorems in numerical analysis is examined in this work, with an

emphasis on how they might be applied to solve optimization and equation problems. Fixed

point theorems are essential in many branches of mathematics and engineering because they

state that there are points that do not change under specific functions. The paper offers a

thorough Python implementation of important fixed point algorithms, emphasizing their

useful applications in iterative techniques for solving nonlinear equations. These algorithms

include the Banach and Brouwer fixed point theorems. Furthermore, visualizations are

created to show how these algorithms perform in terms of convergence and efficacy in

various contexts. The goal of the implementation is to give researchers and students in

numerical analysis and associated fields an approachable way to comprehend fixed point

theorems, as well as theoretical insights and useful tools. The constraints and potential

difficulties of applying fixed point approaches in situations involving complicated problem

solving are also covered in the study.

Keywords- Fixed Point Theorem, Numerical Analysis, Python Implementation, Iterative

Methods, Convergence Visualization

1. Introduction
In the field of mathematics known as "fixed point theory," the existence, uniqueness, and

characteristics of solutions to equations with the form f(x) = x—where f is a specified

function—are examined. This seemingly easy equation has important ramifications and wide-

ranging applications in a variety of domains, including pure mathematics and the solution of

practical issues in computer science, physics, economics, and other areas.

Economics: The presence and stability of equilibria in game theory and economic models are

examined using fixed point theory.

Physics: It is useful for understanding phase transitions and the behaviour of dynamical

systems.

Computer science: It's used to create algorithms that solve optimization and equation issues.

Engineering: Control system design and structural stability analysis both make use of fixed

point theory.

In short, A point x such that f(x) = x is a fixed point of a function f(x).

Because fixed point stands for equilibrium conditions, stability, and answers to a variety of

issues, it is significant. The instruments and procedures needed to thoroughly examine and

comprehend the presence, characteristics, and actions of these unique points are provided by

fixed point theory. The contraction mapping principle, which asserts that if f is a contraction

mapping, then it has a unique fixed point, is the cornerstone of fixed point theory. A function

that gradually shortens the distances between locations is known as a contraction mapping.

ISSN: 0369-8963
Periodico di Mineralogia

Page 47

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

The well-known Banach fixed point theorem asserts that there is a single fixed point for any

contraction mapping on a whole metric space.

Numerous additional significant theorems and applications exist in the large and dynamic

area of fixed point theory [1-9]. A strong technique that may be used to a wide range of

issues is fixed point theory. This discipline is expanding quickly and has seen a lot of

interesting new discoveries.

There are three main branches of fixed point theory discussed in this study-

A. Banach Fixed-Point Theorem

B. Brouwer’s Fixed Point Theorem

C. Newton’s Iterative Method

D. Practical implementation: Solving a System of nonlinear equations.

The three main branches of fixed point theory are followed in the organization of this work.

The existence of unique fixed points through Banach fixed point theorem is covered in

Section 2. The third section examines Brouwer’s Fixed Point Theorem. The primary findings

pertaining to Newton’s iterative method are discussed in Section 4. In section 5, we will solve

a system of nonlinear equations using Newton’s method demonstrating practical

implementation of fixed point theorem. We alsoanalyse the implementation of these theorems

using a python environment to simulate their working for better interpretability in each

section.

2. Banach Fixed-Point Theorem
A major area in fixed point theory is the existence and uniqueness of fixed points. Finding the

circumstances under which a particular function has fixed points and verifying the uniqueness

of these points are the main goals of this field of study. Fixed points are parts of the domain

of a function that don't change while the function is used. Understanding stability,

equilibrium, and transformation behaviour in a variety of mathematical situations depends on

this issue.

The Banach fixed-point theorem, often referred to as the contraction mapping principle, is a

fundamental statement on the existence and uniqueness of fixed points. This theorem ensures

that for a contraction mapping on a whole metric space, there is a fixed point and that it is

unique. A contraction mapping is a function that guarantees convergence to a single

equilibrium point by shortening the distance between locations. This result gives a strong

instrument for proving the existence and uniqueness of fixed points in a variety of

circumstances, and it forms the basis for other theorems.

The Banach Fixed-Point Theorem, a foundational result in the theory of contraction

mappings, highlights the significance of this principle. This theorem, which bears the name of

the Polish mathematician Stefan Banach [1], provides the foundation for comprehending the

existence and uniqueness of fixed points for particular kinds of mappings.

The theorem basically gives the circumstances under which a function f on a whole metric

space X has a single fixed point. The main idea is a contraction mapping, in which the

distance between points is decreased following the transformation by the function f.

2.1 Implementation

Implementing the Banach Fixed-Point Theorem in Python involves defining a contraction

mapping function and iteratively applying this function to an initial guess until convergence

to the fixed point is achieved. A contraction mapping guarantees convergence to a single

fixed point by ensuring that the distance between subsequent iterations shrinks. To put this

approach into practice, a loop must be built up that runs until the fixed point is achieved, or

until the difference between iterations is less than a predetermined tolerance threshold.

ISSN: 0369-8963
Periodico di Mineralogia

Page 48

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

To demonstrate the implementation of the Banach Fixed-Point Theorem in Python with a

specific function and plot the results, let's consider a simple contraction mapping:

f(x) = cos(x)

Algorithm: Banach fixed point theorem

Input-

I. f: Contraction mapping function
II. X0: Initial guess

III. Tol: Tolerance for convergence

IV. Max_Iter: maximum Iterations

Initialization-
V. Set X=X0

VI. Create empty history

Iterative procedure

VII. For i=1 to Max_Iter

. Calculate Xnew=f(x)

. Append Xnew to history

. If |Xnew-X|<1 : update X=Xnew

The result obtained by implementing this in python3.8 is shown in Fig.1. It shows both the

convergence of the Banach Fixed point theorem and the convergence rate for the cosine

function. It is clear that with an initial guess of value 1, it takes around 40 iterations to

converge to the function’s fixed point which is 0.739. According to the Fixed point theorem,

cos(x)=x i.e. at x=0.739, cos(0.739)=0.739 (Note that x is in radians). Hence the solution is

correct.

Fig.1 Convergence of the Banach Fixed point theorem for cosine function as well as the

convergence rate under the maximum iterations.

3. Brouwer’s Fixed Point Theorem
A pillar of fixed point theory and topology, Brouwer's theorem illustrates the larger context

of fixed point existence. The theorem, first proved by Luitzen E.J. Brouwer in 1911 [3], states

that there is always at least one fixed point for every continuous function f mapping a

nonempty, compact, and convex subset D of Euclidean space Rn to itself. In other words,

there is a point x within D such that f(x) = x.

ISSN: 0369-8963
Periodico di Mineralogia

Page 49

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

3.1 Implementation

To demonstrate the implementation of the Brouwer’s Fixed-Point Theorem in Python with a

specific function and plot the results, let's consider a simple contraction mapping:

f(x) = sin(x)

Algorithm: Brouwer’s Fixed Point Theorem

Input-

I. f: Input function
II. X0: Initial guess

III. Tol: Tolerance for convergence

IV. Max_Iter: maximum Iterations

Initialization-
V. Set X=X0

VI. Create empty history

Iterative procedure

VII. For i=1 to Max_Iter
. Calculate Xnew=f(x)

. Append Xnew to history

. If |Xnew-X|<1 : update X=Xnew

. Plot the function f(x) and successive iterations.

The algorithm implementation is somewhat similar but there is a fundamental difference

between both theorems. The Banach Fixed Point Theorem offers better guarantees for

contraction mappings on complete metric spaces, whereas Brouwer's Fixed Point Theorem is

more generic and covers a wider class of functions and domains and does not provide an

exact way of finding the fixed point. The result is shown in Fig. 2, which demonstrates the

convergence of function f(x) along the fixed point 0.02. According to the fixed point theorem,

sin(x)=x i.e. sin(0.02) =0.02. Hence the implementation is correct. Note that x is in radians.

Fig.2 Brouwer's Fixed Point theorem implementation results in python showing the function

plot along with its value on successive iterations.

4. Newton’s Iterative method
Newton’s iterative method or Newton-Raphson method is a special case of fixed point

theorem. It is an iterative process of finding the fixed point of a function-

ISSN: 0369-8963
Periodico di Mineralogia

Page 50

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

𝑔(𝑥) = 𝑥 −
𝑓(𝑥)

𝑓′(𝑥)

Where f(x) is the function whose root we have to find and f’(x) is the derivative of the

function.

Newton's approach iteratively converges to the roots of a function by utilizing the ideas and

characteristics offered by the fixed-point theorem. The theoretical basis for Newton's

method's efficacy in locating function roots is the existence and convergence of the fixed

point of g(x). In Newton’s method, a fixed point corresponds to the root of f(x) such that if x

is fixed point of g(x)then-

x = 𝑥 −
𝑓(𝑥)

𝑓′(𝑥)

f(x) = 0
Newton’s method relies on convergence of a fixed point of g(x) in the neighbourhood of the

root starting from the initial guess. The rate of convergence of Newton’s method is quadratic

and this converges much quickly.

4.1 Implementation

To implement Newton’s method in python, let us lake a function f(x)-

f(x) = x3-3x2+2

Algorithm: Newton’s Iterative Method

Input-

I. f(x): input function

II. f’(x): derivative of input function
III. x0: Initial guess

IV. Tol: Tolerance for convergence

V. Max_Iter: maximum Iterations

Initialization-
VI. Set x=x0

VII. Create empty history

Iterative procedure

VIII. For |f(x)|>Tol and iterations<Max_Iter
. Calculate xnew= x-f(x)/f'(x)

. Update x = xnew

. Increment iteration

Fig. 3 shows the convergence of Newton’s method to find the root of function f(x) as well as

the plot of f(x) vs iterations. The root of the function was found out to be (-0.84,0) in 11

iterations with an initial guess of (1.5,0.88).

ISSN: 0369-8963
Periodico di Mineralogia

Page 51

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

Fig. 3 Finding the root of the equation using Newton’s method considering root as the fixed

point of function f(x)and also showing the convergence with successive iterations.

5. Solving a system of nonlinear equations: A practical implementation

Let us consider two functions f1(x, y) and f2(x,y) defined in a system as follows:

𝑓1(𝑥, 𝑦) = 𝑠𝑖𝑛(𝑥) + 𝑥2 − 𝑦2 − 1

𝑓2(𝑥, 𝑦) = 𝑒𝑥 + 𝑦3 − 2

Algorithm- Implemented in Python

Input-

I. f(x)€ f1(x, y) and f2(x, y): input functions in a system

II. J(x): Jacobian Matrix

III. x0: Initial guess

IV. Tol: Tolerance for convergence

V. Max_Iter: maximum Iterations

Initialization-

VI. Set x=x0

VII. Create empty history

Iterative procedure

VIII. For|f(x)|>Tol and iterations<Max_Iter

A. Calculate delX=-J(x)-1f(x)

B. Calculate xnew= x+delX

C. Update x = xnew

D. Increment iteration

Fig. 4 shows the surface plot for system of nonlinear functions. Through successive

iterations, we can see in the Fig. 5 that the solution to the system of equations is

approximately [0.67951804 0.30027148] found in 11 iterations with initial guess [0,0.1].

ISSN: 0369-8963
Periodico di Mineralogia

Page 52

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

Fig. 4 Surface plot of defined system of nonlinear functions.

Fig. 5 Solution to the system of nonlinear functions using Newton’s method showing

convergence with respect to iterations and contour plot showing value of x after every

iteration till the final value.

6. Conclusion
In this study, we have effectively used Python 3.8 to implement the fixed-point theorem and

Newton’s method being a special case of fixed point theorem. We were able to solve

nonlinear equations efficiently by utilizing the fixed-point iteration technique. The graphic

analysis shed light on each method's convergence tendency by showing how quickly it

approaches the fixed point when given a credible starting guess. The following points are the

key takeaways of this study-

ISSN: 0369-8963
Periodico di Mineralogia

Page 53

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

A. The existence and uniqueness of fixed points for contraction mappings on

complete metric spaces are ensured by Banach's fixed-point theorem,

sometimes referred to as the contraction mapping theorem.

B. Any continuous function that maps a compact convex set to itself has at least

one fixed point, according to Brouwer's fixed-point theorem. This theorem is

fundamental to several disciplines, such as game theory and economics.

C. Newton's method relies on the iterative formula 𝑔(𝑥) = 𝑥 −
𝑓(𝑥)

which is
𝑓′(𝑥)

derived from the fixed point theorem.
D. We plotted the function, the root, and the iterative process using matplotlib in

the python environment. The plots offered a good visual representation of the

convergence behaviour of the approach.

E. Finally, a practical implementation of fixed point theorem for finding out the

solution to the system of nonlinear equations is given. Through visualization,

the convergence after each iteration is clear and the solution can also be seen

on the plot where both functions intersect.

7. References
Banach, S. (1922). Sur les operations dans les ensembles abstraits et leur application aux

equations integrales. FundamentaMathematicae, 3, 133–181.

Border, K. C. (1985). Fixed Point Theorems with Applications to Economics and Game

Theory. Cambridge University Press.

Brouwer, L. E. J. (1912). Uber Abbildung von Mannigfaltigkeiten. Math. Ann., 71, 97–115.

Farmakis, I., & Moskowitz, M. (2013). Fixed Point Theorems and Their Applications. World

Scientific Publishing Company.

Goebel, K., & Kirk, W. A. (1990). Topics in metric fixed point theory (No. 28). Cambridge

University Press.

Granas, A., &Dugundji, J. (2003). Fixed point theory (Vol. 14, pp. 15-16). New York:

Springer.

Pata, V. (2019). Fixed point theorems and applications (Vol. 116). Cham: Springer. 92.

Pathak, H.K. (2018). An Introduction to Nonlinear Analysis and Fixed Point Theory.

Springer.

Subrahmanyam, P. V. (2018). Elementary Fixed Point Theorems (Forum for Interdisciplinary

Mathematics). Singapore: Springer.

Xie, L., Li, J., & Wen, C. F. (2013). Applications of fixed point theory to extended Nash

equilibriums of nonmonetized noncooperative games on posets. Fixed Point Theory and

Applications, 2013, 1-13.

APPENDIX

A. Python code for Banach Fixed Point Theorem

####start########

import numpy as np

import matplotlib.pyplot as plt

def banach_fixed_point(f, x0, tol=1e-7, max_iter=1000):

"""

Implements the Banach Fixed-Point Theorem to find the fixed point of a

contraction mapping.

ISSN: 0369-8963
Periodico di Mineralogia

Page 54

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

Parameters:

f (function): The contraction mapping function.

x0 (float): Initial guess.

tol (float): Tolerance for convergence.

max_iter (int): Maximum number of iterations.

Returns:

float: The fixed point.

list: History of iterates.

"""

x = x0

history = [x0]

for i in range(max_iter):

x_new = f(x)

history.append(x_new)

if abs(x_new - x) <tol:

return x_new, history

x = x_new

raise Exception("The method did not converge")

Example contraction mapping function

def contraction_mapping(x):

return np.cos(x)

Initial guess

x0 = 1.0

Finding the fixed point

fixed_point, history = banach_fixed_point(contraction_mapping, x0)

Display the result

print(f"The fixed point is: {fixed_point}")

Plotting the results

iterations = np.arange(len(history))

plt.figure(figsize=(12, 6))

Plot 1: Convergence of iterates

plt.subplot(1, 2, 1)

plt.plot(iterations, history, marker='o', linestyle='-', color='blue')

plt.axhline(y=fixed_point, color='r', linestyle='--', label=f'Fixed Point:

{fixed_point:.5f}')

ISSN: 0369-8963
Periodico di Mineralogia

Page 55

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

plt.xlabel('Iteration')

plt.ylabel('Value')

plt.title('Convergence of Banach Fixed-Point Iteration for Cosine Function')

plt.legend()

plt.grid(True)

Plot 2: Convergence Rate

plt.subplot(1, 2, 2)

errors = np.abs(np.array(history) - fixed_point)

plt.semilogy(iterations, errors, marker='o', linestyle='-', color='green')

plt.xlabel('Iteration')

plt.ylabel('Absolute Error')

plt.title('Convergence Rate')

plt.grid(True)

plt.tight_layout()

plt.show()

####end######

B. Python code for Brouwer’s Fixed point theorem

########start########

import numpy as np

import matplotlib.pyplot as plt

Define the function

def f(x):

return np.sin(x)

Implementing the fixed point iteration method

def fixed_point_iteration(x0, tol=1e-6, max_iter=5000):

x_iterations = [x0]

y_iterations = [f(x0)]

Iterate until convergence or maximum iterations reached

for i in range(1, max_iter):

x1 = f(x_iterations[-1])

x_iterations.append(x1)

y_iterations.append(f(x1))

if abs(x1 - x_iterations[-2]) <tol:

break

return x_iterations, y_iterations, x1

Plot the function, its iterations, and the fixed point

ISSN: 0369-8963
Periodico di Mineralogia

Page 56

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

def plot_function_and_iterations(x_iterations, y_iterations, fixed_point):

x_values = np.linspace(-2*np.pi, 2*np.pi, 1000)

y_values = f(x_values)

plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)

plt.plot(x_values, y_values, label='f(x) = sin(x)', color='blue')

plt.plot(x_iterations, y_iterations, color='red', linestyle='-', marker='o',

label='Iterations')

plt.axhline(y=f(fixed_point), color='green', linestyle='--', label='Fixed Point')

plt.text(fixed_point, f(fixed_point), f'{fixed_point:.4f}', ha='right', va='bottom')

plt.xlabel('x')

plt.ylabel('f(x)')

plt.title('Convergence along Fixed Point')

plt.grid(True)

plt.legend()

Plot value vs iteration

plt.subplot(1, 2, 2)

plt.plot(range(len(y_iterations)), y_iterations, color='red', linestyle='-')

plt.xlabel('Iteration')

plt.ylabel('f(x)')

plt.title('Function value vs Iteration')

plt.grid(True)

plt.tight_layout()

plt.show()

Example usage

if name == " main ":

x0 =1# Initial guess

x_iterations, y_iterations, fixed_point = fixed_point_iteration(x0)

plot_function_and_iterations(x_iterations, y_iterations, fixed_point)

##########end#################

C. Python code for Newton-Raphson Method

##################start#################

import numpy as np

import matplotlib.pyplot as plt

Define the function and its derivative

def f(x):

return x**3 - 2*x**2 + 2

ISSN: 0369-8963
Periodico di Mineralogia

Page 57

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

def df(x):

return 3*x**2 - 4*x

Implement Newton's method

def newtons_method(f, df, x0, tol=1e-6, max_iter=100):

x = x0

x_values = [x0] # List to store values of x at each iteration

f_values = [f(x0)] # List to store values of f(x) at each iteration

iterations = 0

while abs(f(x)) >tol and iterations <max_iter:

x = x - f(x) / df(x)

x_values.append(x)

f_values.append(f(x))

iterations += 1

if iterations == max_iter:

print("Maximum iterations reached. Convergence not achieved.")

else:

print(f"Root found: {x} after {iterations} iterations.")

return x, x_values, f_values

Define the range of x values for plotting

x_values = np.linspace(-1, 2.5, 100)

y_values = f(x_values)

Find the root using Newton's method

initial_guess = 1.5

root, x_iter, f_iter = newtons_method(f, df, initial_guess)

Plot the function and values vs iteration side by side

fig, axs = plt.subplots(1, 2, figsize=(12, 5))

Plot the function

axs[0].plot(x_values, y_values, label='f(x) = x^3 - 2x^2 + 2')

axs[0].scatter(root, f(root), color='red', label='Final Root')

Plot the values of f(x) after each iteration

axs[0].plot(x_iter, f_iter, linestyle='--', color='r',marker= '.',mfc='k',zorder=1)

Annotate the root

axs[0].annotate(f'Root: ({root:.2f}, {f(root):.2f})', xy=(root, f(root)),

xytext=(root+0.3, f(root)+1),

arrowprops=dict(facecolor='black', arrowstyle='->'))

ISSN: 0369-8963
Periodico di Mineralogia

Page 58

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

Annotate the initial guess point

axs[0].scatter(initial_guess, f(initial_guess), color='green', label='Initial

Guess',zorder=2)

axs[0].annotate(f'Initial Guess: ({initial_guess:.2f}, {f(initial_guess):.2f})',

xy=(initial_guess, f(initial_guess)),

xytext=(initial_guess+0.3, f(initial_guess)-1), arrowprops=dict(facecolor='black',

arrowstyle='->'))

axs[0].set_xlabel('x')

axs[0].set_ylabel('f(x)')

axs[0].set_title('Newton\'s Method for Finding a Root')

axs[0].legend()

axs[0].grid(True)

Plot values vs iteration

iterations = range(len(x_iter))

axs[1].plot(iterations, x_iter, marker='o', label='Value of f(x)',color='b')

axs[1].set_xlabel('Iteration')

axs[1].set_ylabel('f(x)')

axs[1].set_title('Values of f(x) at Each Iteration')

axs[1].grid(True)

axs[1].legend()

plt.tight_layout()

plt.show()

############end###################

D. Python code for solving system of nonlinear equations

#############start################

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

Define the system of nonlinear equations

def F(X):

x, y = X

return np.array([np.sin(x) + x**2 - y**2 - 1, np.exp(x) + y**3 - 2])

Define the Jacobian matrix of the system

def J(X):

x, y = X

return np.array([[np.cos(x) + 2*x, -2*y],

[np.exp(x), 3*y**2]])

ISSN: 0369-8963
Periodico di Mineralogia

Page 59

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

Implement the fixed point iteration method (Newton-Raphson for systems)

def newton_raphson_system(F, J, initial_guess, tolerance=1e-6, max_iterations=100):

X = np.array(initial_guess)

history = [X]

for iteration in range(max_iterations):

FX = F(X)

JX = J(X)

delta_X = np.linalg.solve(JX, -FX)

X_new = X + delta_X

history.append(X_new)

if np.linalg.norm(X_new - X) < tolerance:

print(f'Converged to solution after {iteration} iterations.')

return X_new, np.array(history)

X = X_new

raise ValueError('Did not converge to a solution within the maximum number of

iterations.')

Set the initial guess

initial_guess = [0, 0.1]

Find the solution

solution, history = newton_raphson_system(F, J, initial_guess)

print(f'The solution to the system is approximately {solution}')

Convergence plot

norms = [np.linalg.norm(history[i] - history[i-1]) for i in range(1, len(history))]

Surface and contour plots

x = np.linspace(-2, 2, 400)

y = np.linspace(-2, 2, 400)

X, Y = np.meshgrid(x, y)

Z1 = np.sin(X) + X**2 - Y**2 - 1

Z2 = np.exp(X) + Y**3 - 2

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))

Plot Convergence

ax1.plot(norms, marker='o')

ax1.set_yscale('log')

ax1.set_xlabel('Iteration')

ax1.set_ylabel('Norm of Difference')

ISSN: 0369-8963
Periodico di Mineralogia

Page 60

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

ax1.set_title('Convergence of Newton-Raphson Method')

ax1.grid(True)

Plot Contour

CS1 = ax2.contour(X, Y, Z1, levels=[0], colors='b')

CS2 = ax2.contour(X, Y, Z2, levels=[0], colors='r')

ax2.clabel(CS1, inline=1, fontsize=10)

ax2.clabel(CS2, inline=1, fontsize=10)

ax2.scatter(solution[0], solution[1], color='k', zorder=5)

ax2.plot(*zip(*history), marker='o', color='g', linestyle='--', zorder=4)

ax2.scatter([], [], color='b', label='f1(x,y)=0')

ax2.scatter([], [], color='r', label='f2(x,y)=0')

ax2.annotate('Initial Point', xy=(initial_guess[0], initial_guess[1]), xytext=(-1, 1.5),

arrowprops=dict(facecolor='black', shrink=0.05), fontsize=10, color='black')

ax2.set_xlabel('x')

ax2.set_ylabel('y')

ax2.set_title('Contour Plot of f1 (x,y) and f2 (x,y) with Iteration Path')

ax2.legend(['Solution', 'Iteration Path', 'f1(x,y)=0', 'f2(x,y)=0'], loc='lower center')

ax2.grid(True)

plt.tight_layout()

plt.show()

3D Surface plots

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

ax.plot_surface(X, Y, Z1, alpha=0.5, rstride=100, cstride=100)

ax.plot_surface(X, Y, Z2, alpha=0.5, rstride=100, cstride=100)

ax.set_xlabel('x')

ax.set_ylabel('y')

ax.set_zlabel('Function Value')

ax.set_title('Surface Plots of f1 (x,y) and f2 (x,y)')

plt.show()

#############end###################

ISSN: 0369-8963
Periodico di Mineralogia

Page 61

Volume 94, No. 3, 2025

https://doi.org/10.5281/zenodo.15614033

