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Abstract:  This study investigates the effectiveness of an enhanced Deep Neural Network 

(DNN) model for classifying Distributed Denial of Service (DDoS) traffic. The proposed 

model integrates an Adaptive Attention Layer (AAL) technique to improve detection 

accuracy. Experiments were conducted using a full and a reduced feature sets with three 

dataset sizes, namely; 4K, 40K, and 225K samples. Results reveal a positive correlation 

between the number of features, dataset size, and model performance metrics. The study 

highlights the pivotal role of the AAL in dynamically prioritizing the most relevant features, 

enabling the model to more effectively detect subtle anomalies in high-dimensional traffic 

data. This attention mechanism significantly reduces both false positives and false negatives. 

Across all configurations, the proposed model consistently achieved high performance and 

near-perfect accuracy, precision, recall, and F1-Scores. These results underscore the 

model’s robustness, adaptability, and potential for real-world deployment in modern DDoS 

detection systems. 
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1. INTRODUCTION 

Cybersecurity continues to be a paramount challenge in the digital era, driven by the escalating 

frequency and complexity of network-based attacks. Among these, DDoS attacks represent one 

of the most disruptive threats, as they strategically exploit vulnerabilities across various layers 

of the network protocol stack, often resulting in substantial operational disruptions and financial 

losses. At the network layer, common attacks include IP Spoofing, ICMP Floods, Smurf 

Attacks, and Routing Protocol Exploits. These methods often manipulate IP headers or exploit 

weaknesses in the ICMP protocol to overwhelm target systems with malicious traffic, resulting 

in service interruptions [1]. At the transport layer, attackers target vulnerabilities in TCP and 

UDP protocols. Common attacks here include TCP SYN Floods, and UDP Floods. 

Additionally, session hijacking and exploits targeting SSL/TLS protocols, at the session layer, 

further increase the risk [2]. 
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Traditional signature-based IDS are often inadequate in identifying novel, polymorphic, or 

zero-day threats. This limitation has driven a shift toward intelligent, AI-driven security 

systems. Artificial Intelligence (AI) and Machine Learning (ML) offer adaptive, real-time 

detection capabilities, making them well-suited for addressing modern cybersecurity challenges 

[3], [4]. AI, broadly defined as the science of building intelligent machines capable of human-

like tasks, underpins the development of autonomous threat detection systems. Within this 

realm, ML algorithms learn from historical data, while Deep Learning (DL), a subfield of ML, 

employs multilayered neural networks to capture complex, non-linear patterns in high-

dimensional datasets [5]. 

DNNs have achieved state-of-the-art results in domains such as computer vision and natural 

language processing. Their hierarchical learning structure enables the extraction of multi-level 

features, making them especially effective for detecting subtle anomalies in cybersecurity 

contexts. Compared to traditional Artificial Neural Networks (ANNs), DNNs provide improved 

predictive performance at the cost of greater computational demand which is an acceptable 

trade-off in many high-stakes security scenarios [6]. 

This study proposes an enhanced DNN-based intrusion detection model that incorporates an 

Adaptive Attention Layer (AAL) and data normalization techniques to improve the 

classification of DDoS and benign network traffic. The primary objectives of this research are 

to, (i) Enhance classification accuracy, (ii) Minimize detection latency, and (iii) Ensure 

scalability and adaptability in dynamic threat environments. 

The remainder of this paper is structured as follows: Section II reviews related work on DDoS 

detection and deep learning-based IDS. The proposed model architecture, and methodology are 

described in Section III.  Section IV presents experimental results and comparative evaluations. 

Section V concludes the study with key findings and suggestions for future research.  

 

2. FEATURES RELATED WORK 

Numerous studies have explored ML and DL methods for intrusion detection, frequently using 

the CIC-IDS2017 dataset as a benchmark for evaluating model performance due to its 

comprehensive inclusion of modern attack vectors.  Ref [7] developed an intrusion detection 

system optimized for big data environments by integrating dimensionality reduction technique, 

Principal Component Analysis (PCA) with Random Forest (RF) and K-Means clustering. Their 

approach reduced the dataset's original 79 features to 39, selecting 45 critical features, and 

achieved a detection accuracy of 99.7%.  Ref [8] work enhanced this dataset dimensionality 

while preserving specificity and sensitivity. The optimized dataset enabled faster model 

evaluation and maintained high classification performance across number of classifiers, 

supporting its applicability in real-world IDS validation. Ref [9] provided a critical analysis of 
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the dataset, identifying structural inconsistencies that could bias IDS performance. They 

proposed a refined dataset version and enhancing the reliability of detection outcomes.  

Ref [10] introduced a hybrid IDS architecture integrating ML and DL. Evaluated on CIC-

IDS2017, UNSW-NB15, NSL-KDD, and WSN-DS datasets, the model achieved a test accuracy 

of 89.26% and F1-scores up to 98.64%, effectively capturing spatial and temporal patterns.   Ref 

[11] proposed a DNN-based model for network intrusion detection using 36 selected features 

and four hidden layers. Ref [12] aimed to improve AdaBoost-based IDS performance through 

dimensionality reduction, the system achieved an overall accuracy of 81.83%, enhancing 

detection efficiency. 

Addressing the limitations of existing datasets, [13] introduced a custom real-traffic-based 

dataset comprising over 70 features and various attack types. The dataset was evaluated using 

Support Vector Machine, Decision Tree, and Naive Bayes classifiers. Ref [14] proposed an 

improved feature selection algorithm, FACO, which combines Ant Colony Optimization with 

a tailored fitness function and optimized pheromone update rule.   Similarly, [15] combined 

Discrete Differential Evolution with the C4.5 algorithm to optimize feature selection, improve 

detection accuracy, and reduced training and testing time.    

Several recent studies have explored various techniques to enhance intrusion detection 

performance. Ref [16] applied Information Gain to identify the most relevant features for 

anomaly detection, selecting 52 features and evaluating multiple classifiers, ultimately 

achieving a highest accuracy of 99.87%. Ref [17] investigated deep learning (DL) models for 

intrusion detection in IoT environments, utilizing the CIC-IDS2017 dataset. Ref [18] focused 

on detecting web-based attacks such as SQL Injection and Cross-Site Scripting (XSS), 

achieving detection accuracies of up to 99.57% when evaluated with a 78-feature dataset. Ref 

[19] used a RF algorithm with selective feature selection process on the KDDCup99 dataset to 

reduce the rates of the false alarm and improve classification accuracy. Ref [20] employed a 

DNN with a learning rate of 0.1 on the KDDCup99 dataset to detect attack attempts. 

In comparison, the proposed model, attention-based deep learning technique, achieved an 

accuracy of 99.93%, surpassing several established benchmark methods [21]. Furthermore, this 

study demonstrates the robustness and adaptability of the proposed model by evaluating not 

only its accuracy but also its precision, recall, and F1-score across varying feature sets. 

 

 

3. MATERIALS AND METHODS 

This section outlines the design, and the evaluation of the proposed model for effective DDoS 

attack detection. The methodology comprises the model architecture, dataset preprocessing, 

feature selection, and performance evaluation. 
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Data Preprocessing and Normalization 

This study uses Machine Learning CSV data, which come within 8 traffic monitoring sessions 

and 78 features which labelled either as a normal traffic (defined as Benign traffic), or anomaly 

traffic (referred to as Attack traffic). There are 14 types of attacks in this dataset. This study 

focuses on the DDOS attack.  Effective preprocessing is crucial for ensuring the model's 

accuracy and training efficiency.  

The following steps are applied: the dataset is first loaded in CSV format, followed by data 

cleaning to eliminate or impute non-numeric and null values. The target column, indicating 

benign or DDoS traffic, is then encoded into binary labels (0 or 1). Next, min-max normalization 

is applied to scale all features between 0 and 1, improving training stability and convergence 

speed. Finally, the dataset is split into training (80%) and testing (20%) sets. 

Proposed Model Architecture 

The traditional DNN consists of three stages, namely, the Input stage or layer, the Hidden stage 

which usually consists of one or more layers, then the Output stage or layer. Hidden layers 

include the rectified linear unit function or the activation function, such as the Sigmoid function 

(if the output is true or false or 0, 1), the SoftMax function (if the class label has more than two 

pattern shown in the last stage. In these DNNs an equal weight is applied to all input features 

initially, which can dilute the model’s sensitivity to attack-related patterns in high-dimensional 

data. The proposed architecture addresses this limitation by selectively amplifying crucial 

signals, particularly useful in complex intrusion detection datasets.  It enhances a traditional 

DNN by incorporating the Adaptive Attention Layer between the input and hidden layers. This 

layer enables the model to dynamically assign importance to input features, thereby improving 

its ability to detect subtle patterns in network traffic.  

The architecture comprises four main components: an input layer that receives numerical 

features from the dataset; the AAL, which computes attention scores to reweight input features 

based on their relevance; multiple hidden layers consisting of fully connected neurons with 

activation functions such as ReLU and Sigmoid; and an output layer that uses the Sigmoid 

function to perform binary classification (benign vs. DDoS attack). To explore performance 

trade-offs, the model is trained using different feature subsets, 78, 39, and 25 features. 
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Figure 1 DNN with Adaptive Attention Layer 

  

Adaptive Attention Layer Mechanism 

The AAL operational flow includes; 

 Weight Computation: During training, each input feature is assigned an initial weight 

wi, which is updated via backpropagation. 

 Softmax Normalization: The weights are normalized to attention scores through the 

softmax function. 

 Feature Reweighting: Inputs are scaled by their attention scores to prioritize 

informative features. 

 Forward Propagation: The reweighted feature vector proceeds through the network, 

influencing the final classification decision. 

The AAL assigns importance to each feature input xi using an attention score αi which is 

computed via the softmax of learnable weights wi. The final weighted input vector is then 

calculated as: 

𝑥𝑖
′ =  𝛼𝑖 . 𝑥𝑖 =  

𝑒𝑤𝑖

∑ 𝑒𝑤𝑖𝑛
𝑗=1

  .  𝑥𝑖                 . . .  (1) 

The resulting weighted inputs 𝑥𝑖
′  are forwarded to the subsequent hidden layers for further 

processing. This process ensures that more informative features have greater influence during 

forward propagation, thereby enhancing model interpretability and precision in detecting attack 

patterns.  It also reduces overfitting by suppressing noise and irrelevant features, and 

significantly boosts classification metrics across various dataset sizes. 
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The general architecture of the proposed model consists of five phases, which are illustrated in 

Figure 2 above. These phases are data collection, data processing, the proposed DNN model, 

training, and testing evaluation of the applied model. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Proposed Model to Analysis Network Data 

  

Training and Evaluation Process 

To examine the impact of dimensionality on model performance, the following feature sets are 

tested (i) Full set of the dataset (78 features), (ii) Reduced set based on feature relevance (39 

features), and (iii) Minimal set for lightweight computation (25 features). For each scenario, the 

model is trained and tested with and without the AAL and normalization layer to evaluate their 

effectiveness. 

The model training involves several stages: forward propagation, where input data passes 

through the attention and hidden layers to produce predictions; loss calculation, using binary 

cross-entropy to quantify prediction error; and backpropagation, where gradients are computed 

and propagated backward to update the weights via an optimizer such as Adam. The training is 

conducted over 50 epochs per experiment to ensure sufficient learning. 

In the beginning, as the data is fed into the neural network, an exponential value of the weights 

(associated with each input), are calculated and then normalized to assign relative importance 

to each input. Each input is then multiplied by its normalized weight to determine its relative 

influence on the network (Equation (1)). 

Node value =  Σ𝑥𝑖
′. 𝑤𝑖 + 𝑏     . . .  (2) 
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𝑆𝑖𝑔𝑚𝑜𝑖𝑑 =   
1

1 + 𝑒−𝑙𝑎𝑠𝑡 𝑛𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒
    … (3) 

Forward Propagation: In this step, the weighted inputs are summed along with a bias term, 

Equation (2). The result is then passed through the Sigmoid activation function, which ensures 

that the output values remain between 0 and 1, see equation (3). Once the outputs are computed, 

they are compared with the target values, and the error is computed as shown by Equation (4) 

as the difference between the actual and target values. 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 = 0.5(𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2  . .  (4) 

Backpropagation: After calculating the error, the network starts correcting it through 

backpropagation. First, the error gradient for the last node is computed based on the difference 

between the expected and actual output. Then, the error gradient for previous nodes is calculated 

based on their values. Finally, the weights are updated using the learning rate, adjusting the old 

weights in a way that progressively reduces the error. 

This process is repeated over multiple epochs until the error is minimized, improving the 

accuracy of the neural network’s predictions. Backpropagation is used to adjust the weights and 

minimize the error across the neural network. 

Experimental Setup 

The proposed technique is implemented on a system with the following specification: Intel Core 

i7 CPU, 8GB installed RAM, 64-bit OS. Popular Python libraries (Scikit-learn, NumPy, Pandas, 

and Matplotlib) are utilized for the implementation and the visualization.  

Feature Selection Strategy 

Effective feature selection plays a critical role in enhancing model performance, reducing 

computational overhead, and improving interpretability. This research evaluates the proposed 

DNN model using three different feature sets: the full 78-feature set, a reduced 39-feature set, 

and a minimal 25-feature set.   By testing the model under these three feature configurations, 

the study evaluates: The impact of dimensionality on classification accuracy, the model's 

robustness in feature-constrained environments, and the importance of normalization and the 

attention mechanism across varying input complexities. Using a multi-level feature selection 

strategy oppose will help in the flexibility validation of the proposed model as well as it offers 

practical deployment configurations in systems with different resource limitations.  The 

selection strategy for each is described as follows: 

A. Full Feature Set (78 Features): The original CIC-IDS2017 dataset includes 78 features 

extracted from network traffic and cover a wide range of packet-level and flow-level 

statistics (packet sizes, time intervals between packets, protocol flags, and byte 

distribution).  
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B. Reduced Feature Set (39 Features): To improve processing speed while keeping detection 

accuracy high, a smaller set of 39 features was selected. Features with low variance or 

strong correlation with others were removed. The goal was to keep only the most useful 

features, balancing accuracy and computational efficiency. 

C. Minimal Feature Set (25 Features): For environments with limited computing power, a 

minimal set of 25 features was chosen manually, based on expert analysis and previous 

experiments. These features, listed in Table 1, include key indicators of suspicious 

activity. This set is designed to keep detection effective while reducing model complexity, 

making it suitable for lightweight or real-time intrusion detection systems. 

Table 1: demonstrates 25 feature selection. 

 

Evaluation metrics 

Confusion matrix according to (Daniela X et, al. 2009) can be interpreted as a tool that has a 

function to perform analysis whether the classifier is good in recognizing the tuples of different 

classes. The calculation of the matrix confusion is showed in Table 2. After setting up the 

models, it is time to measure the performance by going through an evaluation stage. The 

proposed model needs to be tested to confirm its reliability based on four possible outputs, TP, 

FP, TN, and FN. Where:  

─ TP: True positives are events that are correctly identified as abnormal 

─ FP: False positives are legal events that are incorrectly identified as abnormal 

─ TN: True negatives are incidents that are correctly identified as legal activities 

─ FN: False negatives can be defined as possible intrusive activity that the IDS passes 

through as normal activity. 

 

The models used in this work were evaluated based on accuracy, precision, recall, and F1_score. 

Table 2: Confusion Matrix 

 Predict Label 

Features Selected 

1 Bwd Packets total Length 10 Bwd IAT Std 19 Average Packet Size 

2 Fwd Packet Length Min 11 Bwd IAT Min 20 Avg Fwd Segment Size 

3 Bwd Packet Length Min 12 Fwd Packets/s 21 Subflow Fwd Bytes 

4 Bwd Packet Length Std 13 Bwd Packets/s 22 Init_Win_bytes_forward 

5 Flow IAT Mean 14 Min Packet Length 23 Init_Win_bytes_backward 

6 Flow, IAT Min, 15 Packet Length Variance 24 Active Mean 

7 Fwd IAT Min 16 PSH Flag Count 25 Idle Min 

8 Bwd IAT Total 17 ACK Flag Count   

9 Bwd IAT Mean 18 Down/Up Ratio   
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 Intrusion Normal 

Host Label 
Intrusion TP TN 

Normal FP FN 

  

The following measurement metrics are used to measure the performance of a dataset: 

1. Precision: It measures the proportion of correctly identified positive samples among all 

predicted positive samples. It is calculated as: 

 

Precision =
True Positives

True Positives+False Positives
      . . .  (5) 

 
 

2. Recall: It commonly referred to as sensitivity, is the frequency at which favorable forecasts 

are expected to be positive.  It is calculated as;  

 

Recall =
True Positives

True Positives+False Positives
     . . .  (6) 

 

3.  F1-Score: It is the weighted harmonic mean of precision and recall (the average of recall 

and precision values). This score accounts for false positives and negatives. Intuitively this 

is not an accuracy, but F1 is usually more useful than accuracy, especially if it has an uneven 

distribution of classes. 
 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ×
Precision×Recall

Precision+Recall
    . . .  (7) 

 

4. Accuracy: It is the percentage of the correctly classified objects (see Equation 8). Accuracy 

is the proportion of correctly classified instances: 

 

Accuracy  =   
True Positives+True Negatives

Total Samples
        … (8)  

 

 

 

 

 

 

 

 

 

4. RESULTS AND ANALYSIS 

Table 3 shows the DNN output with 78 features with normalization and AAL layer. Using 40K 

records, split data 80/20% and 50 epochs. 
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Table 3:  Possible outputs for different thresholds. 

Threshold TP FP FN TN Precision Recall F1Score Accuracy 

0.1 378 57 0 365 0.869 1.000 0.930 0.928 

0.2 377 22 1 400 0.945 0.997 0.970 0.973 

0.3 375 2 3 420 0.995 0.992 0.993 0.993 

0.4 365 1 13 421 0.997 0.966 0.981 0.988 

0.5 365 1 13 421 0.997 0.966 0.981 0.988 

0.6 364 1 14 421 0.997 0.963 0.980 0.987 

0.7 364 1 14 421 0.997 0.963 0.980 0.987 

0.8 363 1 15 421 0.997 0.960 0.978 0.986 

0.9 362 1 16 421 0.997 0.958 0.977 0.985 

 

At a threshold of 0.1, the model achieves perfect recall (1.000), detecting all DDoS attacks, but 

with lower precision (0.869) due to 57 false positives. While this ensures no attacks are missed, 

it increases false alerts, potentially overburdening network administrators. Raising the threshold 

to 0.3 offers the best trade-off, yielding high precision (0.995), recall (0.992), F1-score (0.993), 

and accuracy (0.993), making it well-suited for environments requiring both accuracy and 

efficiency. Beyond 0.4, precision remains high (~0.997), but recall gradually drops (to 0.958 at 

threshold 0.9), indicating a more conservative model that may miss some attacks. In DDoS 

detection, where even brief undetected incidents matter, this trade-off must be carefully 

managed. 
  

Table 4: Effect of AAL and Normalization for different dataset sizes. 

Dataset TP FP FN TN Precision Recall F1Score Accuracy 

4K AAL+Norm 375 2 3 420 0.9947 0.9921 0.9934 99.38% 

4K No AAL/Norm 373 4 5 418 0.9894 0.9868 0.9881 98.88% 

40K AAL+Norm 3984 5 15 3965 0.9987 0.9962 0.9974 99.75% 

40K No AAL/Norm 2695 0 1304 4000 1.0000 0.6739 0.8053 83.69% 

225K AAL+Norm 25703 9 21 19410 0.9997 0.9992 0.9994 99.93% 

225K No AAL/Norm 25724 15958 0 3461 0.6171 1.0000 0.7630 64.65% 

  

Table 4 shows the DNN performance metrics with 78 features, 0.3 threshold, and normalization 

and AAL layer. Using different dataset sizes, split data to 80/20% and running 50 epochs. 

In all dataset sizes, using AAL with normalization technique boosts precision, recall, and 

accuracy significantly, see Table 4. Without the propose technique there is a serious weakness 

where the Recall, at 40K and especially 225K, stays high but precision and accuracy collapse, 

the drop in accuracy from 99.93% to 64.65% (225K) when removing AAL/Norm is significant.  

Extremely high FP rates reduce the system’s usability. The AAL and normalization layers are 

crucial for generalization, especially in larger datasets. 
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Table 5: Effect of Feature Size Reduction with AAL and 40K dataset size 

Features Count TP FP FN TN Precision Recall F1Score Accuracy 

78 3984 5 15 3965 0.9987 0.9962 0.9974 99.75% 

39 3979 5 20 3995 0.9987 0.9950 0.9968 99.69% 

25 3983 31 3 3983 0.9923 0.9992 0.9957 99.58% 

 

Table 5 shows that all three feature sets perform excellently across all metrics. Where the 

reducing features to 39 has negligible impact. Even 25 features offer almost the same 

performance, F1 remains above 0.99. However, there is a slight increase in false positives at 25 

features. So, if computational cost is a concern, reducing features to 25 may be acceptable due 

to its high recall and minimal F1 drop. 

 

Table 6: With vs Without AAL for 25 Features, 40K Dataset 

Method TP FP FN TN Precision Recall F1Score Accuracy 

AAL + Norm 3983 31 3 3983 0.9923 0.9992 0.9957 99.57% 

No AAL/Norm 3636 27 350 3987 0.9926 0.9121 0.9506 95.50% 

 

The AAL/Norm technique ensures strong balance of high precision and near-perfect recall. See 

Table 6. Without it the precision still, but recall drops (many false negatives). Many 

attacks/events are missed. Similarly, the accuracy drops from ~99.6% to 95.5%, significant in 

sensitive systems like intrusion detection. The AAL and normalization improve event detection 

dramatically even with fewer features. 

 

 

 

Table 7: Threshold Sweep, 78 Features, AAL/Norm, 225K 

Threshold TP FP FN TN Precision Recall F1 Accuracy 

0.1 25709 35 15 19384 0.9986 0.9984 0.9985 99.89% 

0.2 25703 9 21 19410 0.9996 0.9984 0.9990 99.93% 

0.3 25702 9 22 19410 0.9996 0.9983 0.9989 99.93% 

0.4 25696 8 28 19411 0.9997 0.9989 0.9993 99.92% 

0.5 25695 8 29 19411 0.9997 0.9989 0.9993 99.92% 
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As shown in Table 7, all thresholds yield outstanding performance. F1 score remains nearly 

perfect across the board. The lower thresholds slightly increase FP but decrease FN. Higher 

thresholds reverse that. The 0.2 or 0.4 thresholds seem ideal (excellent balance of precision and 

recall). That is the fine-tuning of threshold between 0.2–0.4 gives the best generalization 

without significantly sacrificing any metric. 

 

Table 8 Accuracy Across Datasets and AAL Configurations 

Features Dataset Size 
Accuracy with 

 AAL (%) 

Accuracy without  

AAL (%) 

78 

4K 99.37 98.87 

40K 99.75 83.69 

225K 99.93 64.65 

39 

4K 98.37 93.12 

40K 99.68 85.37 

225K 99.90 67.12 

25 

4K 98.62 97.75 

40K 99.57 95.50 

225K 99.89 84.96 

 

Table 8 highlights the strongest results achieved by the proposed model. With 39 features, the 

model maintained solid performance (only slightly lower than with the full set of 78 features). 

On the 4K dataset, it reached 98.37% accuracy, showing only a slight dip. Performance 

improved on the 40K dataset, achieving 99.68% accuracy, suggesting that more data helps 

compensate for fewer features. On the larger 225K dataset, accuracy peaked at 99.90%, 

confirming the model’s effectiveness even with reduced features when enough data is available. 

In contrast, removing normalization and the adaptive attention layer led to noticeable drops in 

accuracy, 93.12% on the 4K dataset, 85.37% on 40K, and just 67.12% on 225K, indicating less 

stability and more errors, especially as the dataset size grew. 

When the features were reduced further to 25, the model still performed well with normalization 

and attention in place: 98.62% accuracy on 4K, 99.57% on 40K, and 99.89% on 225K. This 

shows that larger datasets can offset some of the impact of feature reduction. However, 

removing normalization and attention in this setup caused sharper performance declines, down 

to 97.75%, 95.50%, and 84.96%, respectively, highlighting the critical role these techniques 

play in ensuring accuracy and model stability. 
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5. DISCUSSION 

The experimental findings provide strong empirical support for the effectiveness of the AAL 

layer for DDoS traffic classification. Across all tested configurations, the proposed model 

consistently outperformed traditional DNNs and several established benchmarks. 

The model exhibited exceptional generalization, particularly with the full 78-feature set, where 

it achieved an accuracy of 99.93% and an F1-score exceeding 0.99. And even with the reduced 

feature set (25 features), the model maintained high performance; accuracy of 99.58%, F1-score 

of 0.9957, illustrating its robustness and suitability for deployment in environments with limited 

computational resources. 

Threshold analysis revealed that performance remained stable across a broad range of decision 

thresholds, with the 0.2–0.4 interval providing the optimal balance between FPs and FNs. This 

tunability enhances the adaptability of the model to various operational settings. 

Ablation experiments confirmed the critical contribution of the AAL and normalization. 

Removing these components led to significant degradation in performance, particularly on 

larger datasets, where precision and overall accuracy dropped dramatically (e.g., from 99.93% 

to 64.65% on the 225K dataset). The AAL specifically mitigates overfitting by emphasizing 

informative features and suppressing noise, which is especially important in high-dimensional 

data scenarios. 

In comparison with recent studies (e.g., [7], [16], and [11]), the proposed model not only 

achieves superior detection rates but does so with improved efficiency and scalability. It 

demonstrates that a carefully integrated attention mechanism can eliminate the need for 

complex ensembles or excessive feature sets while still delivering competitive results. 

 

Table 9: Comparison with Related Works 

Method Accuracy Recall Precision F1-Score Dataset 

 Vigneswaran  2018 [20] 93%  0.915  0.997  0.955  KDD Cup 99 

Bandarupalli 2024 [11] 97.62%  0.8858 0.6529  0.6716  CIC-IDS-2017 

Proposed Architecture   

Features Count 78 99.75% 0.9962 0.9987 0.9974 CIC-IDS-2017 

Features Count 39 99.69% 0.9950 0.9987 0.9968 CIC-IDS-2017 

Features Count 25 99.58% 0.9992 0.9923 0.9957 CIC-IDS-2017 
 

 

Table 9 presents a comparative analysis between the proposed intrusion detection architecture 

and two related works [11], and [20]. The comparison is based on the four key performance 
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metrics, namely, Accuracy, Recall, Precision, and F1-Score. Vigneswaran’s method achieved 

an accuracy of 93%, a high precision of 0.997, and a lower recall (0.915) on KDD Cup 99 

dataset. These values indicate some limitations in detecting all attack instances. While the other 

model (Ref [20]) which based on the modern CIC-IDS-2017 dataset, improved overall accuracy 

to 97.62% but suffered from low precision (0.6529) and F1-score (0.6716), These values 

indicate higher false positives and suboptimal balance between detection and error rates. 

In contrast, our proposed model, which based on the same modern CIC-IDS-2017 dataset, 

achieved superior results across all the four metrics, regardless of the feature count used. With 

78 features, the model attained an accuracy of 99.75%, recall of 0.9962, precision of 0.9987, 

and an F1-score of 0.9974. When the feature set was reduced to 39 and then to just 25, the model 

retained high accuracy (99.69% and 99.58%, respectively) with only marginal decreases in 

other metrics.  

 

6. CONCLUSION 

This study introduced an enhanced DNN-based intrusion detection model for classifying DDoS 

and benign network traffic. By leveraging diverse dataset configurations, the proposed model 

consistently achieved high performance, reaching up to 99.93% accuracy alongside near-perfect 

precision, recall, and F1-scores. 

The integration of a dynamically reweighting input features technique enhances the model’s 

sensitivity to attack-relevant patterns and maintains an outstanding performance even when 

feature dimensionality was reduced to 25. The consistent performance of our model highlights 

the model’s robustness, scalability, and efficiency, confirming its suitability for practical 

deployment in resource-constrained cybersecurity environments without compromising 

detection accuracy.  Future research will focus on deploying the model in live network 

environments and extending its functionality to accommodate a wider spectrum of attack types 

and evolving threat dynamics. 
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