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Coding through the perspective of Fermat Theorem and Residue System
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Abstract: the Little Fermat theorem helps us to define congruence relation using the relatively
primeness. Further divisibility rules help to create the highest powers of primes confirm the
residues. This in turn helps to create Cartesian coordinate system of residues while any number 7
can have at most ¢ (n) distinct residues. Using this residue system as the Cartesian coordinates,
we can create concatenated strings formed from the ordered ¢(n)- tuple that follow all the
properties of a commutative ring. If the system is created using the composite numbers, then there
will be zero divisors and otherwise, the commutative ring will be a field under usual addition and
usual multiplication at the powers of the primes. These ¢ (n) — tuples can be encoded using the
technique of cross product of ¢ (n) — length and decoded using the reverse cross product technique.

l. Introduction:

A prime number is relatively prime to every other number except to its multiples. So, if p is prime
and (a, p) = 1 with a # 1, then it follows a is not a multiple of p. so, Little Fermat theorem says
“aP~! = 1modp whenever p is prime and ged (@, p) =17

A prime number is relatively prime to every number except to its multiples.

Taking p = 1531, a = 6, we have 6°3° = 1mod1531

If a = b mod m;c = d mod m, then m|a — b,m|c — d

Also, m|ac — bc, m|bc — bd

So, m|(ac — bc) + (bc — bd)

This helps ac = bd mod m

Using this, a™ = b™mod m for every positive integer n and whenever a = b mod.

We can construct codes of length ¢ (n) for each number n such that the residues of each location
of the n — length Cartesian coordinates or concatenated string will replace the actual number
present in the location where ¢ (n) is the Euler totient function.

2. Creating a code using ¢@(n):

For instance, ¢(32) = 14
We can write 14 length code (1000, 12, 28, 39, 57, 643, 51225, 2123, 5152, 999, 1, 123, 13, 29)
a® = bymodm,1 <i < kands = tmod k, then a* = b;"'mod m ... 2.1

See that 4* = 4 mod 14;48 = (4Y)? = 42 mod 14 = 2 mod 14

(4%)3 = 23mod 14 or simply 4'? =8 mod 14; 41° = (48)% = 22 = 4 mod 14;
420 = (4%)° =45 = 4* x4 = 4 x 4 = 2 mod 14; 4** = 8 mod 14; ...

It is observed that

4% = 416 = 428 = 4*0 = ... = 4mod 14
48 =420 =432 =4 = ... = 2mod 14
412 = 424 = 436 = 48 = ... = 8mod 14
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The generalization is

43"+l = 4 mod 14, .. (i)
43"*2 =2 mod 14 .. (ii)
43" =8mod 14 ... (i)

In view of this discussion,

321000 = (28 + 4)1000 = 4100054 14

Note that every other term of this expansion is a multiple of 28 which is congruent to 0 mod 14.
= 43033+1 = 4 mod 14 by (i).

Using the above discussion, 321°°° = 4mod 14 .. 1
3212 = (28 + 4)?mod 14 = 4> = 43 ®Wmod 14 =8mod4 ... 2
3228mod 14 = 4%*8mod 14 = 43D*1mod 14 =4mod14 .. 3
323%mod 14 = 43°mod 14 = 433 =8mod14 . 4
32°"mod 14 = 45"mod 14 = 439 =8mod14 .. 5
326%3mod 14 = 43 mod 14 = 43@M+1 od 14 =4mod14 .. 6
32512250d 14 = 4512250d 14 = 431707 m0d 14 = 8mod 14 ... 7
3221231m0d 14 = 4%123mod 14 = 430D+ 2 mod 14 =2mod 14 ... 8
325152mod 14 = 45152mod 14 = 437D mod 14 =4mod 14 ... 9
32°mod 14 = 4°°mod 14 = 43C33) mod 14 =8mod 14 ... 10
32'mod 14 = 4'mod 14 = 4mod14 . 11
32123m0d 14 = 4'%23mod 14 = 43* Y mod 14 =8mod 14 .. 12
323mod 14 = 4¥3mod 14 = 3®* 1 mod 14 =8mod 14 .. 13
322%mod 14 = 4*°mod 14 = 43@*2mod 14 =2mod14 .. 14

So, the code congruent modulo 14 to

(1000, 12, 28, 39, 57, 643, 51225, 2123, 5152, 999, 1, 123, 13, 29) is
(4,8,4,8,8,4,8,2,4,8,4,8,8,2)

Note that each code inZ X Z X ... X Zgpy has a unique code of length ¢ (n)- tuple residue modulo
n, but each code residue modulo n is not necessarily assigned to a unique code in
(ZXZX ... X L)pn)-

Addition of ¢@(n) length Cartesian codes obeys closure law under addition as well as
multiplication.

Consider a plain text for the residues of ¢(32) as

A=(5,6,7,8,9,10,11,12,13,1,2,3,4,5) =567891011121312345 ... 2.2
Since n = 14 which is of two digited number, each character in the string will be identified with
two digit locations. So, 4 can be written as 0506070809101112130102030405
B=(2,2,2,3,4,10,3,5,4,10,11,12,13,13)

=0202020304100305041011121313 . 23
=(5,10,10,2,3,6,7,3,3,4,5,6,7,8)
=05101010203060703030405060708 . 24

A+B=(7,8,9,11,13,20,14,17,17,11,13,15,17,18)
(4+B)C= (5*7, 10*8, 10*9, 2*11, 3*13, 6*20, 7*14, 3*17, 3*17, 4*11, 5*13, 6*15, 7*17,8*18)
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(4+B)C=(35,80,90,22,39,120,98,51,51,44,65,90,119,144) ... 2.5
=2,2,0,1,0,0,2,0,0,2,2,0,1,0)
AC = (25, 60, 70, 16, 27, 60, 77, 36, 39, 4, 10, 18, 28, 40)
=(1,0,1,1,0,0,2,0,0,1,1,0,1, 1)
BC=(10, 20, 20, 6, 12, 60, 21, 15, 12, 40, 55, 72, 91,104)
=(1,2,2,0,0,0,0,0,0,1,1,0,0,2)

AC+BC=(2,2,0,1,0,0,2,0,0,2,2,0,1,00 .. 2.6
(2.5) and (2.6) confirm that distributivity of the powers of primes using addition over
multiplication obeys the residue system. 2.7

3. Encryption of a string of residues:

(Z X Z X ... X L)y is the Cartesian product of residue class rings such that at least one n;, 1 <
i <k is a composite number.

From (2.1), it is seen that ¢ (32) = 14. So, considering the 14 distinct powers of 32 as strings of
length 14, the strings in (2.2) through (2.6) are formed. These strings can further be encrypted and
decrypted as follows.

Using the technique of cross product system on the ¢ (n) length code, the resulting determinant
model can be seen in the following way.

Considering dqd, ...dy(32) as the encryption key, the plain text having the code e;e; ... ey (3z)

will be enciphered as follows. . 2.8
Ny N, N; N, Ns Ng N, Ng
dy ds | d3 dy | dy ds | ds dg | de¢ d; | d7 dg | dg do |dy dyg
€ €3 €3 €4 €4 €5 €5 € €6 €7 €7 ¢€g €g € | € €9
Ny Nig Nyy Ny, Ni3 Ni4
dio dix | di1 dip | dip diz [ diz dig | diy di| dy dy
€10 €11 | €11 €12 | €12 €13 [ €13 €14 [ €14 €1 ]| €& €

Assume that 4 is the encryption key given in (2.2) and the code in (2.3) is to be encrypted.
It can be done as

Ny | Np | N3 | Ny Ns Ne N7 Ng No Nio
99 10|10 11]11 12[12 1313 1|1 2|2 3
414 10110 313 515 414 10110 11111 12

(NSRNe)
(NSREN]
N
W o
W

N11 N12 N13 N14
3 4|4 5|5 5|56
12 13113 13113 2] 2 2
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Note that the highest term possible in N; — location will be 14 X 14 — 0 = 196 which is a 3 digit
number and so is, each location of the enciphered code would occupy 3 digit string.
On simplification, the required code using modulus is

Ny | Np | N3 | Ny | Ns | Ng | Nyj | Ng | No | Nyjg
-2 5 5 50 —80 19 —-17 | 126 | —-11 | -9

Nll N12 N13 N14

-9 —13 =55 —2
...... 33
Applying modulo 14, this becomes
Ny N, N3 Ny Ns Ne Ny Ng No | Nig
12 9 9 8 4 5 11 0 3 5
N11 N12 N13 N14
5 1 1 12
...... 3.4

The encrypted code has 3¢ (n) length in which if the calculation in (3.3) bears negative sign, then
the code in the respective i*" - place will be 1 and otherwise 0, p(n) + 1 < i < 2¢(n).

Also, the entry in the jt* — location will be number of times the division conducted.

When 7 has two decimal digits, then each location in the cipher text will be

012 009 009 008 004 005 011 000 003 005 005 001 001 012 100010101111101 010103 06
0102090101010104012 ... 3.5

This is the required cipher text.

4. Decryption of the Cipher Text:

The decryption process will consider 3 digit string starting from left for 3n digits, considers the
residue initially bears negative sign if 1 is the location between 3n + 1 to 4n and two location
string from 4n + 1 to 6n locations that the number of times the modular operation is performed.

012 009 1009 |008 |004|005 011 |000|003]005
005 001 001 012

Itis nothing but 12,9, 9, 8,4,5,11,0,5,5,5,1,2,12 ... 4.2

10001010111110 which is equivalent to

EIESENEN BN EE B B B B B

That means, the residue is negative in the 1%t location, 2™ is positive and so on.
12-14=-2,14-9=5,14-9=5,14-8=6,4-14=-10,14-5=9,11-14=-3,14-0=0
5-14=-9,5-14=-9,5-14=-9,13-14=-1,12-14=-2,14-12=2
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So, the string that suits — 2,5, 5,6,-10,9,-3,0,—9,—9,-9,-1,-2,2 ... 4.4
Let us take the encrypted string (3.5) from the location 4¢(32) + 1 to 6¢(32) and each substring
of two characters are to be multiplied with the integer (4.4)

01,01,01,03,06,01,02,09,01,01,01,01,04,01 are to be multiplied with mod 14 and the following

equations. 4.5
That is,

dye; —dze; = —2;dzey, —dye; =5 dyes —dsey = 5; dseg — dges = 6;

dee; —d,eq = —7; dyeg —dge; =9 ; dgeg — doeg = —3; dgejg — dipeg = 0;

dipe11 — di1€10 = =9 ;dq11€12 — dize1r = =95 dyze3 — dizei; = —9; dyzeqy — dyse3 = —1;
diges —dieqy = —2;dye; — dyey = 2;

Using the encryption key (2.8), d1d; ... dgy(32) = 567891011121312345 and (3.2) gives

6e; —7e, = —2;7e, — 8e3 = 5;8es —9e, = 5;9¢, — 10e5 = 6; 10e;, — 11eg = =7
1168 - 1267 = 9, 1239 - 13@8 = _3, 13610 - 139 = O, 1911 - 2610 =-9
2612 - 3611 = _9 ) 3913 - 4812 = _9, 4814 - 5913 = _1; 531 - 6314 == 2, 592 - 661 == 2

After performing (4.5), these equations become

6e; —7e, = —1(14) + 12; 7e, —8e; = 5(1) = 5; 8e; — 9e, = 5(1) = 5;

9es — 10es = 3(14) + (14 — 6); 10e; — 11es = —6(14) + 4

1leg — 12e; = 2(14) — 9; 12e9 — 13eg = —2(14) + 11; 13e;5 — 1leg = 9(14) + 0;

ley; —2e19 = —1(14) + 3 ; 2e4, —3e; = —1(14) + 5 ; 3e43 —4e, = —1(14) + 5; 4eqy —
5e,3 = —1(14) + 1, 5¢; — 6e14 = —4(14) + 1, 5¢, —6e; = —1(14) +12  ...... 4.6

Substituting each of these equations in the immediate preceding and succeeding equations, each
of values of e;, 1 < i < 14 are obtained and so, the decrypted code is

e1e; .. ey3z) = 22234103541011121313 . 4.7

The encryption key and system of non homogeneous equations will give the values of
€1, €y, .-+, €y (32) that are nothing but the decrypted code.

It can be easily seen that ¢ (635) = 52 which is twice the number of alphabet. So, for coding lower
and upper case alphabet, a code length of 52 and the powers of 635 can be considered for the above
encryption and decryption procedure. Similarly, ¢(192) = 64 that deal with all types of
characters and numbers upon the keyboard for encryption.
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